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CHAPTER 1

INTRODUCTION



2 Introduction

1.1 2D materials

Human prehistory is generally subdivided into three ages, defined by the
material that was used to make the newest technology at the time: the
Stone Age, the Bronze Age and the Iron Age. If we continue that line of
thought to the present, we are arguably in the Silicon Age, because the
brains of our computers and phones are made of silicon. However, over
the next few decades, in the quest to make our gadgets faster, thinner and
more efficient, we might enter into a new age: the 2D Material Age. Two-
dimensional (2D) materials are materials with a thickness of one atom, or
only a few atoms.

It is not yet clear exactly which 2D materials will be in our gadgets.
Many of these materials have been made in laboratories, the first one being
graphene in 2004 by Andre Geim and Konstantin Novoselov, who later won
a Nobel prize for their research. Graphene has some amazing properties: it
is extremely strong, light and flexible, and it is a great conductor for heat
and electricity. Since then, other materials such as the transition metal
dichalcogenides and phosphorene have been added to the list. All these
materials have different electronic and optical properties.

These basic properties stem from the type of atoms that they are made
of, and the geometry of the lattice formed by those atoms. For example,
graphene is made of carbon atoms, and its lattice is hexagonal (see Fig.
1.1). These properties can be changed by adding electric or magnetic fields,
stretching or compressing the material, or adding disorder, for example by
adding other atoms onto the surface. Moreover, these materials can be
grown or etched into different shapes, further changing their properties. In
this thesis we will look at self-similar shapes — shapes that have repeating
patterns when we zoom in or out.

We will be doing calculations on models of different 2D materials (chap-
ters 3 and 4) and structures with self-similar shapes (chapters 5 and 6) to
study how electrons behave in these materials and how they interact with
light. These calculations are based on the theory of quantum mechanics.
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Figure 1.1: A hexagonal graphene lattice, with nearest neighbor hopping t,
to and from the site indicated in blue.

1.2 Quantum mechanics

The theory of quantum mechanics describes matter and energy on the scale
of atoms. It came about in the early 20th century, starting with Max
Planck’s postulate that thermal radiation is emitted in quantized energy
packets. Albert Einstein then suggested that these packets can be seen as
individual light particles called photons, that can be emitted or absorbed
by electrons in a material. A few years later Niels Bohr proposed a model of
the atom in which electrons have quantized orbits around the nucleus, and
Louis de Broglie showed that these electrons can be seen as both particles
and waves. This collection of ideas forms the starting point of the theory
used in this thesis.

Quantum mechanics has some counterintuitive aspects that mostly have
to do with probability and measurement. The state of a quantum system
is defined in terms of a wave function, and the absolute square of the wave
function gives us probabilities for measurement outcomes. Moreover, any
measurement apparatus will interact with the quantum system, changing
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its wave function and the corresponding probability distribution. Most
famously, when we measure the speed of a quantum particle, its location
cannot be exactly known, and vice versa. Luckily, in this thesis we will
mostly look at averages over a large number of particles, and there will be
no issues with measurement.

In our description of electrons roaming in a lattice of atoms the two
most important quantities are the Hamiltonian H and the wave function
|¢)). The Hamiltonian describes the orbitals present within the model and
the interactions between them, and the wave function describes what state
the electrons are in. The behavior of electrons is dictated by the Schrédinger
equation

L d A
ih— [9(8)) = HI¢(1)), (1.1)

where £ is the reduced Planck constant. If we assume that the Hamiltonian
is time-independent, the time-evolution of the wave function is then given
by

[ (t)) = e 1P| 0)). (1.2)

For a full quantum description of a material we would have to include
all possible interactions between electrons and atomic nuclei, electrons and
other electrons, and more. This would make any calculation involving more
than a handful of particles extremely complicated.

Instead, we use the tight-binding approximation. This is a simple and
computationally efficient way to model solid state systems. However, it
is a single-particle model: its main limitation is that we cannot include
any correlation effects, i.e., interactions between different electrons. In
the tight-binding approximation we assume that the electrons are “tightly
bound” to the atoms in the lattice. There is only a limited interaction
(“hoppings”) with the potentials on surrounding atoms in the solid. Hence
the wave function of the electron is very similar to the atomic orbital of
the free atom. Often, a model considering only hoppings to the nearest
neighbors surrounding an atom (see Fig. 1.1) is already enough to model
the important features of a material.

However, a realistic model can contain many more hoppings than just
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nearest neighbor interaction. In general, we obtain these hopping param-
eters from Density Functional Theory calculations. These are “ab initio”
(or “first-principles”) calculations, i.e., calculations based on basic quan-
tum mechanical considerations, without using any higher order parameters
such as hopping terms. This method can be used for systems containing up
to the order of thousands of atoms. If we want to go beyond that, or sim-
plify our model, we can distill lattice and tight-binding hopping parameters
from the results of a DFT calculation. In this thesis we will consider models
containing millions of atoms, for which we will probably need a computer.

1.3 Computational physics

In the Manhattan project in the 1940s, physicists used analog computers to
perform a huge amount of calculations that were needed to study nuclear
fission, which ultimately would produce the atomic bomb. It became ap-
parent that computers could revolutionize the way we do science. When in
the late 40s and early 50s the first digital computers were developed, they
attracted the interest of many influential physicists such as Enrico Fermi
and John von Neumann.

In the early 50s, Enrico Fermi, John Pasta, Stanislaw Ulam and Mary
Tsingou studied the time evolution of vibrations in a system of nonlinear
springs using a computer. They found a surprising result, namely that a
complicated nonlinear system can exhibit periodic behavior. This famous
paper is an early example of a “numerical experiment”: a computer simula-
tion of a toy model, a tiny universe in which the programmer sets the rules
of physics, that can give us insight into real world phenomena. We will look
at toy models in the two chapters of this thesis about self-similar quantum
systems (chapters 5 and 6). Looking at it this way, computational physics
is of course a theoretical exercise, but it has an experimental element as
well.

The computer has come a long way since the 50s. We now do our
scientific calculations on cluster nodes that are capable of simulating sys-
tems containing more than 10® atoms. Moreover, the internet has made it
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possible to share programming code so that everyone can use it for their
research projects. For most of the calculations performed in this thesis we
have made our own code that is available on the internet for others to use,
as described in chapter 7.

1.4 Outline of this thesis

First, we will look at the models and methods used in this thesis. There will
be a short description of tight-binding, and an overview of the electronic and
optical properties we are interested in. Then we will summarize the tight-
binding propagation method (TBPM), a method for calculating properties
of large-scale tight-binding systems.

Then we move on to the first application. We study how the electronic
properties of antimonene ribbons change if we place them in an electric
field. It turns out that the direction in which the field is applied has large
consequences for the electronic structure of the material.

In chapter 4 we study the optical properties of black phosphorus. This
material behaves differently in two directions, which leads to interesting
properties.

In chapters 5 and 6 we look at self-similar systems. It will turn out that
their self-similarity leaves a footprint in the way they conduct electrons.
Then, we take a look at their optical properties. Again, the self-similarity
has large consequences for interaction with light.

Finally, in the appendix, we take a look at the open-source software
Tipsi. Tipsi provides an easy way to perform TBPM calculations on any
tight-binding system. We discuss how to install it, how to build a Hamil-
tonian, and how to run the calculations.
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MODELS AND METHODS
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2.1 Tight-binding

A tight-binding Hamiltonian can generally be written as

H= chc +th ¢ ¢, (2.1)

i i)

where €; denotes the on-site potential on a local orbital 4, ¢;; (the “hopping”
parameter) quantifies the interorbital interaction between orbitals ¢ and 7,
and éj (¢;) is the electron creation (annihilation) operator on orbital i. A
wave function is written as

=S aili), (2.2)

where a; is a complex number giving the value of the wave function |7) on
each site 7. From now on, we will omit the hats on operators.

Within a tight-binding model we can incorporate strain, external elec-
tric and magnetic fields, and disorder.

The application of external strain changes the interatomic bond lengths,
and modifies the hopping terms as [1]

Eij = ( B@]w> ) (23)

’zj|

where r;; is the vector between sites 7 and j in the equilibrium positions
between two atoms ¢ and j, r;; is this vector in the presence of strain, and
Bi; is the dimensionless local electron-phonon coupling.

A uniform electric field is applied in the z-direction by modifying the
on-site potentials with

gz‘ =€ XeX AU x Zis (2.4)

where e is the elementary charge, AU is the bias voltage (with units V/nm)
and z; is the z-coordinate of site i.
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We can incorporate a uniform magnetic field B = V x A using a Peierls-
substitution:

fi; =ty x e~ Jrl Aw)dr, (2.5)

In the Landau gauge B = B2, A = —Byz, this becomes

tij = tije T aBlity)(@im), (2.6)

Finally, in large samples we can study the effect of many types of dis-
order. For example, vacancies can be simulated by simply leaving out a
site from the sample, although in some systems this is actually closer to a
model for adsorption of an adatom or admolecule.

2.2 Electronic properties

Once we have built our Hamiltonian, and impose periodic boundary con-
ditions, we can perform a Fourier transform and calculate all eigenstates
|ki) and eigenvalues FE;(k) for a momentum k. In practice, such exact
diagonalization has computational complexity O(N?3) for N orbitals.

The band structure of a material is given by the eigenvalues at different
momenta and shows the electronic structure around the symmetry points of
the crystal. Most importantly, this shows us at which energies the material
is conductive, how large the band gap is, and which optical excitations
could be possible.

The density of states (DOS) is a histogram of energy levels in the system.
It is calculated with

D(E) = % /BZZ(i(E ~ Ey(k))dk, (2.7)

where i labels the different energy bands, and the momentum k is integrated
over the Brillouin zone.
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2.3 Optical properties in momentum description

Linear response theory describes the first-order response of a system to a
perturbation [2]. The optical conductivity in the aa-direction, or in other
words, the current-current response in the a-direction from applying an
alternating electromagnetic field in the « direction, is given by the Kubo
formula

gs . .
Re(0aa(@)) =~ | Tm | 3 I(kilfalks)

o (B — p) — f(Eyg — ) k.

- 2.8
Ey; — By +w+1 (2:8)

Here, |ki) and Ej; are the eigenstates and eigenenergies for momentum k.
gs = 2 is the spin degeneracy, {2 is the unit cell surface, and ¢ (usually taken
0 = 5, unless otherwise specified) meV is a small damping parameter. Jy,
is the momentum-space current operator in the a-direction

Jie = — & Zez rj—Ti)a'ky, it — 1) CLij. (2.9)

Moreover, f(E — p) is the Fermi-Dirac distribution with Fermi level u:

1

J(E—p) :m- (2.10)

Using the Kramers-Kronig relations, we can also obtain the imaginary part

I (Taa(w) 2“73/ Re( "“_C“WZ Re(0aa(W)) ;s (2.11)

We use the units og = “2—6; for graphene or graphene related structures.
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If we want to calculate the full dielectric function of the material, we
first need to calculate the dynamical polarization

Re((a.)) = 25 [ 37 |kl e

f(Bxi —p) = f(Bxj — 1) o
k 1
S Ba—Bgtwii OF (2.12)

Then, using the random phase approximation (RPA), the dielectric
function is given by

e(q,w) =1 =V (q)ll(q,w), (2.13)
where
27e?
V(q) = ﬂ (2.14)

is the Fourier component of the Coulomb interaction in two dimensions,
and k is the background dielectric constant.
The loss function can then be written as
1

—Imm. (2.15)

2.4 Optical properties in real-space description

For systems without translational invariance, we cannot compute momen-
tum eigenstates, and we need a different way to calculate optical properties.

First, let us take a look at the joint density of states (JDOS), which is
given by:

w) — f(En — )
Ey—E, +i5

1 E,, —
Imxjpos(w) = %Imz f(hw n (2.16)
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Using the JDOS, we can calculate an effective conductivity-like function

1
Reojpos(w) = *;ImXJDOS(w) : (2.17)

which quantifies the density of available electronic transitions with energy
hw between state-pairs. However, in general there are selection rules for
optical transitions, and not every available transition is allowed.

To get the optical spectrum, we write the current-current response func-
tion [2] in the form

XJQJB Z an ) (218)

where

1f( )_f(En_
hA hw+ E, — E, +1

Q) = ) ) (T8 (2.19)

and (Ju)mn are the matrix elements of the current operator

(Joz)mn — <wm|=]a’¢n> 5 (220)

Zt” ri)aclc;. (2.21)

Here, |t¢,,) are the eigenstates of the Hamiltonian.

The dielectric function operator e(w), by definition, relates the external
potential Vexi(w) to the total potential V:

([ Vext (w)[r) = /dr’ (rle(@)[r) (x'[V[r') . (2.22)

Treating V' as a perturbation, within RPA, the dielectric function may be
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expressed as follows [3]:

(Fe@)n’) = o'y = [ Vol ) 0 e (w))

62

(x|Vel”) =

[r =]

<I'”|X(w) ‘rl> =4gs ‘51_i>%1+ Z Grn <¢n|r”> <1’”Wm> <7/}m|r/> <r/‘wn> )

f(Em_M)_f(En_M)
By — Ep — h(w +10)

(2.23)

Gmn =

|r) denotes a position eigenvector; V¢ is the Coulomb interaction potential;
X(w) is the polarizability function.

Egs. (2.23) allow us to exactly calculate the full dielectric function
g(w) of any tight-binding system without translational invariance. Tom
Westerhout wrote code for calculating these quantities, available as an open
source project [4]. Despite the O(N*) algorithmic complexity, it makes
calculations possible for systems of up to several thousands of sites.

2.5 Transport properties

Following Landauer theory [5], the electronic conductance G in the
scattering-free limit is obtained by counting modes:

G(E) = 222 > Nu(E), (2.24)
k

where Ni(F) is the number of bands that cross the energy E for a given
wave-vector k.

However, if there is scattering, we need to use a method called wave
function matching. We attach semi-infinite leads two either side of the
scattering region (Fig. 2.1) and model incoming electrons as Bloch waves
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in one of those leads. The Hamiltonian is given by

. VL
T
H=|" H% VL : (2.25)
VL HL VLS

V[TS HS

where Hj, is the Hamiltonian of the leads and Hg is the Hamiltonian of the
scattering region; V; connects those Hamiltonians. The scattering states in
the leads take the form

Un(i) = $(0) + Y Snd (1) + > Spnd (3), (2.26)

where d)iﬁl’ out (i) are normalized incoming and outgoing propagating modes

in the i-th unit cell away from the scattering center, and gzb;"(i) are evanes-
cent modes that do not contribute to the conductance. These modes have
the form

¢n(2) = ()‘n)ana (2.27)
and obey the Schrodinger equation

(Hy + VA + ViIA)xn = Exa (2.28)

Then we can compute the wave functions in the scattering region ¢
and the scattering matrix S,,, for each incoming propagating mode n and
an outgoing mode m. The conductance G between the left lead A and the
right lead B is then given by the Landauer formula

6B =2C Y (S (220
- h mn . .

ncA,meB

This method is implemented in the KWANT package [6] for python.
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¢S
¢out
¢in , (bout

s
Hy,
Hg

Figure 2.1: An illustration of the conductance calculation using wave func-
tion matching.

2.6 Tight-binding propagation method

If our model is too big to diagonalize the Hamiltonian, so that we cannot
use the methods in the previous sections, we can revert to stochastic meth-
ods. We employ a method named the Tight-Binding Propagation Method
(TBPM), which computes the time propagation of a set of random wave
functions, and extracts physical quantities from the resulting correlation
functions [7, 8]. The computational cost of this method is only O(N),
which makes it possible to do computations on systems up to the order of
N = 10® orbitals.

For rigorous mathematical proofs on the formulas in this section, we
refer to Yuan et al. (2010) and Hams et al. (2000) [7, §].

We start our TBPM computation by taking a random state

¥(0)) = Za i), (2.30)
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where a; are random complex numbers with >, |a;|?> = 1. Then we calculate
its time evolution

[$(t)) = e ]3p(0)). (2.31)

We use the Chebyshev polynomial decomposition of the Hamiltonian to

compute [(t)). First, we normalize H so that H = H/||H|| has eigenvalues

in the range [—1, 1] and define ¢ = ||H||t. Then, the time evolution can be
represented as

(&) = |Jo(E ) +2 Z Im )| 12(0)), (2.32)

where Jp, () is the Bessel function of the first kind of order m. The modified
Chebyshev polynomials T}, can be calculated up to machine precision by
using the recurrence relation

T (H)|$) = =2iH T (D)) + Tn-1(H) ), (2.33)
To(H)[) =), Ty(H)W) = —iHw). (2.34)
2.6.1 DOS
The density of states can be calculated with
D(E) = % /_ N eFtCpog(t)dt, (2.35)

where the DOS correlation function is

Cpos(t) = (¥(0)[4 (1)) (2.36)

The calculation of the correlation function can be improved using an average
over many random initial states. In practice, for a large enough system,
the random initial state is already a superposition of all eigenstates, which
makes sure that the result is correct. The same argument holds for the
calculation of other quantities, where we can also average over multiple
random initial states, which becomes less necessary for larger systems.
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2.6.2  Quasi-eigenstates

An approximation of an eigenstate (or a superposition of degenerate eigen-
states) at a certain energy E can be calculated using the spectrum method:

wE) =5 [ () dr, (2.37)

:27r

after which [¢(FE)) is normalized.

2.6.3 DC conductivity

By using the DOS and quasi-eigenstates obtained earlier, as well as the
Kubo formula [9] we can calculate the DC conductivity o, in direction o
at zero temperature with [10, 7]

— / " Re [e7EtCpe(t)] dt, (2.38)
0

(¥(0)[Jae Ja|9(E))
[(WO)(EN]

where A is the area of the unit cell, divided by the total number of orbitals.
Here, it is important to note that |¢(0)) must be the same random initial
state used in the calculation of |¢)(E)). Moreover, for this calculation we
again need the real-space current operator

Cpo(t) = (2.39)

e
Ja = —% Z tij(rj - I‘Z')aCICj, (240)
,L’]

2.6.4  AC conductivity

Using Kubo’s formula, we can write for the optical conductivity in direction
a due to a field in direction g [10, 7]:

) e—hw/ksT  poo .
Reaag(w):El_1>][(1)1+W ; e~ “sin(wt)2Cxc(t)dt, (2.41)
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Cac(t) = Im(ya(t)]Jalib1(t))s-

Here, we use the Fermi-Dirac distribution operator

1

H—p)=——
f( lu) e,B(H*,U«) + 13

and the wave functions

2.6.5

[Y1(t))p =e~ 1 — f(H — )] J51%(0)),
[4a(t)) =e 1 f(H — p)](0)).

Dynamical polarization

Finally, we can express the dynamical polarization as [11]

2

H(q,(.d) = _A/O eiwtCDP(t)dt>

Cpp(t) = Im (42 (t) | p(a)[d1a, (),

where the density operator is given by

and

o(q) = Z BERS Cjc@'
A

[r(a,t)s =e L = f(H — w)]p(—a)|¥(0)),
[a(t)) =e~ " F(H — p)[4(0)).

(2.42)

(2.43)

(2.46)

(2.47)



CHAPTER 3

ANTIMONENE RIBBONS UNDER BIAS

A systematic study of the electronic properties of single layer Sb (an-
timonene) nanoribbons is presented. By using a 6-orbital tight-binding
Hamiltonian, we study the electronic band structure of ribbons with zigzag
and armchair termination. We show that there is good agreement between
ab initio calculations and the tight-binding model. We study how the size
of the gap can be controlled by applying an external bias potential. An
electric field applied perpendicular to the antimonene layer is found to
increase the band gap, while a transverse bias potential leads to a position
dependent reduction of the band gap. Both kinds of bias potential break
inversion symmetry of the crystal. This, together with the strong intrinsic
spin-orbit coupling of antimonene, leads to spin-splitting of the valence
band states.

This chapter is published as: FE. van Veen, J. Yu, M.I. Katsnelson,
R. Rolddn, S. Yuan “Electronic structure of monolayer antimonene

nanoribbons under out-of-plane and transverse bias,” Phys. Rev. Materi-
als 2, 114011 (2018).

19
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3.1 Introduction

Two dimensional (2D) materials [12], such as graphene, transition metal
dichalcogenides and hexagonal boron nitride, are attracting tremendous in-
terest due to their unique electronic, optical and mechanical properties,
remarkably different from their three-dimensional counterparts [13]. Re-
cently, the family of 2D materials derived from the group-VA layered crys-
tals (P, As, Sb, Bi) has been the focus of great attention [14, 15], black
phosphorus being the most well studied among them. In 2015 Zhang et
al. predicted that, contrary to bulk antimony which is a semimetal, single-
layer Sb (antimonene) is an indirect band gap semiconductor [16]. Soon af-
ter, it was demonstrated that atomically thin antimonene can be obtained
by different means, including van der Waals epitaxy [17], micromechani-
cal exfoliation [18], liquid phase exfoliation [19], molecular beam epitaxy
[20] or electrochemical exfoliation [21]. Theoretical calculations have stud-
ied in detail the electronic properties of this material [22, 23, 24, 25, 26].
Strong spin-orbit coupling was also reported, with a coupling strength of
A= 0.34 eV [27]. Ab initio quantum transport calculations have shown that
antimonene field effect transistors (FETSs) can satisfy both the low power
and high performance requirements for usage in nanoscale electronic and
optoelectronic devices [28]. Previous experience with graphene and other
2D materials has further motivated theoretical studies of the electronic
properties of nanoribbons of group-VA semiconductors [29, 30, 31, 32, 33].
Recently, experimental fabrication of antimonene nanoribbons has been re-
ported [34], demonstrating band gap opening due to quantum confinement.

In this chapter we study the band structure and electronic properties of
Sb nanoribbons in the presence of out-of-plane and in-plane electric fields.
We find that edge states are present in nanoribbons with both zigzag and
armchair termination. We find good agreement between ab initio numerical
simulations and tight-binding calculations. We further demonstrate that
the size of the band gap can be controlled by the presence of an external bias
field. Application of a bias field breaks inversion symmetry which, together
with the strong spin-orbit coupling in antimonene, leads to splitting of the
valence band edges, with corresponding spin-valley coupling due to the
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.

DOS

—
=
-
—

Figure 3.1: (a) The buckled honeycomb lattice structure of antimony, (b)
an armchair SbNR and (c) a zigzag SbNR. (d) Band structure and DOS for
pristine Sb calculated with the tight-binding Hamiltonian (3.1), with the
hopping parameters given in Table 3.1.

Rashba effect.

The chapter is organized as follows. In Sec. 3.2 we describe the tight-
binding model and the details of the calculations. We also show results for
unbiased nanoribbons. In Sec. 3.3 we study the effect of a perpendicular
electric field on the electronic properties and the band structure of Sb-
nanoribbons, and the effect of an in-plane bias field is studied in Sec. 3.4.
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Our main results are summarised in Sec. 3.5.

3.2 Model and method

Single layer antimonene consists on a buckled honeycomb lattice of Sb
atoms (Fig. 3.1), with the two sublattices vertically displaced by b = 1.65 A,
and with an in-plane lattice constant of a = 4.12 A. The relevant energy
bands of the electronic structure, including SOC effects, are very well cap-
tured by a 6-orbitals tight-binding Hamiltonian developed by Rudenko et
al. [27], which includes the 3 p-orbitals of each of the two Sb atoms of the
unit cell:

H = Zm Z’L Za Emiocim‘acmio (31)
T
+ Zmn Zz‘j Zo tmia;njacmiacnja
T
+ Zmn Zz Zcro’ hmia;nia’cmiacnia’

where m, n run over orbitals, 7, 7 run over sites and o, ¢’ run over spins; c:rm- o
(Cmic) 1s the creation (annihilation) operator on orbital m at site ¢ with spin
o. The parameters €,,, account for on-site potentials, t,,is;njo are inter-
orbital hopping terms, and intra-atomic SOC is accounted by A ig:nis’. The
intra-atomic SOC constant is A = 0.34 eV and the hopping parameters are
given in Table 3.1 [27] and schematically shown in Fig. 3.2.

The corresponding DOS is calculated from Eq. 2.7. The band structure
and DOS obtained with this model for bulk antimonene are shown in Fig.
3.1. Single layer antimonene is an indirect gap semiconductor with a band
gap of 0.92 eV. The edge of the valence band is located at the I' point of
the BZ, with main contributions from p, and p, orbitals, while the edge
of the conduction band is placed at a non high-symmetry point of the BZ,
with relevant contributions from all 3 p-orbitals of Sb.

Since we are interested in electronic properties of semi-infinite ribbons,
the momentum parallel to the infinite edge is a good quantum number
and we can Fourier-transform Hamiltonian (3.1) along that direction. The
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Figure 3.2: Top view of the antimonene crystal structure with the hopping
parameters (t;) included in the TB model. Their corresponding values are
given in Table 3.1. The orange circles represent p-orbitals.

band structure of finite nanoribbons (we impose periodic boundary con-
ditions along the direction parallel to the edge) with zigzag and armchair
termination are shown in Fig. 3.3. Firstly, the finite width of the anti-
monene ribbon leads to a reconstruction of the band structure with the
formation of electronic bands composed by the accumulation of N sub-
bands, where N is the number of unit cells along the width of the ribbon.
Secondly, midgap edge states appear in both armchair and zigzag nanorib-
bons (Fig. 3.3), originating from the unsaturated bond on the edge of the
ribbon. This is different from graphene and black phosphorus ribbons, for
which edge states are absent for armchair termination [35, 32]. The energy
bands associated to the edge states are flat and weakly dispersing, leading
to prominent peaks in the DOS associated to saddle points in the band
structure.

In this work, we only consider chemically unsaturated edges, i.e., we
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Table 3.1: Hopping amplitudes ¢; (in eV) entering in the TB Hamiltonian
Eq. (3.1), as obtained in [27]. d denotes the distance between the lattice
sites on which the interacting orbitals are centered. N, is the corresponding
coordination number. The hoppings are schematically shown in Fig. 3.2.

i ti(eV) d(A) N.| i ti(eV) d(A) N.| i ti(eV) d(A) N.
1 209 289 1[6 021 412 1 [11 -0.06 412 2
2 047 289 2|7 008 28 2 [12 -0.06 503 1
3 018 412 4|8 -007 503 2 |13 -0.03 6.50 2
4 -050 412 19 007 650 2 |14 -004 824 1
5 -011 650 2 |10 0.07 650 2 [15 -0.03 824 1

do not take edge chemistry into account. Attaching different atoms to the
edge could significantly alter the electronic structure around the Fermi level
[36].

To check whether our bulk TB model agrees with ab initio calculations
also for finite ribbons, we performed first-principles calculations on the elec-
tronic structure of antimony nanoribbons, including SOC, using the Vienna
ab initio simulation package (VASP) [37, 38]. Electron exchange and corre-
lation interactions were described using the Perdew-Burke-Ernzerhof (PBE)
pseudopotentials within the projector augmented-wave method [39]. The
Brillouin zone sampling was done using a 35*1*1 Monkhorst-Pack grid for
static calculation. The atomic structure of the nanoribbons are obtained
from the 2D nanosheet without structure relaxation, and the vacuum region
between two adjacent images is set to be 100 A. The results are shown in
Fig. 3.4, in comparison to tight-binding calculations. We can see that the
agreement between the two methods is reasonable. Apart from some slight
shifts in energies, the contours of the conduction band minimum (CBM),
valence band maximum (VBM) and edge states in the TB model are very
similar to the DFT result. We notice that previous first-principles calcu-
lations for narrow nanoribbons, of up to ~3.4 nm, predicted a direct band
gap for zigzag termination [31], which is also in agreement with our own
TB calculations. By systematically studying the evolution of the bandgap
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(a) armchair, no bias

-0.51

DOS, 7' (au) ko DOS, 7' (au)

Figure 3.3: Band structure, DOS and transmission for (a) an armchair
ribbon of width 41 nm and (b) a zigzag ribbon of width 36 nm. The
conduction and valence band edges are indicated with black crosses, the
edge band maxima are orange and the edge band minima are blue. The
midgap bands correspond to edge states.

with nanoribbon size, we conclude that the two secondary CBMs around
k = £0.63}; get closer to the the CBM at k = 0 for increasing size. For a
ribbon width of 175 nm, the difference between their energy values is only
on the order of 107 eV.

The midgap states are highly localized at the edges, as can be seen in
Fig. 3.5. For zero bias, each k presents two degenerate states with opposite
spin in opposite sides of the ribbon. Since time-reversal symmetry must be
preserved, the spin polarization of one edge associated with one state of a
given wave-vector k, is compensated by the opposite spin polarization of
the degenerate state with momentum —k.

In the following, we calculate the electronic transmission T'(E) in the
scattering-free limit, which is obtained by counting modes (Eq. 2.24). The
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Table 3.2: Effective masses for antimonene nanoribbons.

edge | mz (mo) | m;, (mo)

armchair 0.2 0.13
zigzag 0.13 0.09

results for each termination are shown in Fig. 3.3 (solid orange lines),
together with the DOS (solid black lines).

The main difference between the transmission in zigzag and armchair
nanoribbons occurs for energies within the bulk bandgap. At these ener-
gies T'(F) is dominated by edge states which, as we have seen, are different
for zigzag and armchair terminations. As the ribbon width increases, the
transmission function corresponding to the bulk states increases, accompa-
nied by a reduction of the energy gap, while the transmission of the edge
states remains the same.

We have further calculated the effective mass of electrons m} and holes
mj, from the nanoribbon band structure (table 3.2). Electrons are heavier
than holes for both edge terminations. We also find that carriers in zigzag
nanoribbons are expected to have lower effective masses than in armchair
nanoribbons. These results can be useful for calculations based on low
energy k - p analytical models.
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Figure 3.4: Comparison of the band structure of nanoribbons as obtained
from tight-binding and DFT methods: (a) a 2.3 nm width ribbon with arm-
chair termination, and (b) a 2.9 nm width ribbon with zigzag termination.
Orange corresponds to TB method and black to DFT calculations.
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Figure 3.5: LDOS of edge states at k = 57 for (a) an armchair ribbon
of width 20 nm and (b) a zigzag ribbon of width 18 nm. The orange and
blue lines correspond to spin up and down, respectively. Notice that these
states are degenerate with the corresponding states for k = —4f, which
have opposite spin.
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3.3 Out-of-plane bias

Application of external gate voltages is a powerful tool to control and tune
the electronic and optical properties of layered 2D materials [40]. In this
section we study the effect of a perpendicular bias voltage on antimonene.
Since monolayer Sb is buckled, the application of an electric field perpendic-
ular to the sample leads to a potential difference between atoms in different
planes. Therefore we introduce an out-of-plane bias AVp (without consid-
ering screening) by setting the on-site potential on the two sublattices in
Hamiltonian (3.1) to different values:

€Emic = AVP X Zi, (3.2)

where z; is the z-coordinate of site ¢ in the buckled structure, which is plus
or minus 0.82 A on sublattice A or B, respectively. Our results for the zigzag
and armchair nanoribbon band structure, with the corresponding DOS and
electronic transmission, are given in Fig. 3.6. First, we notice that for
both types of ribbon, we obtain a bandgap widening under the application
of the electric field. The evolution with the applied bias of the valence
and conduction bands, as well as the edge states, are shown in Fig. 3.7.
Opening of the bandgap with electric field was also predicted for single-layer
black phosphorus [41]. Interestingly, application of a bias voltage breaks
inversion symmetry (sublattices A and B are no longer equivalent). This,
together with the strong spin-orbit coupling leads, due to the Rashba effect,
to splitting of the edge states, and of the valence and conduction bands.
Notice that, because of the latter, the zigzag ribbon band gap becomes
indirect when a bias is applied (see insets of Fig. 3.6 for a close-up of
the valence band edge). Application of a perpendicular bias field opens,
therefore, the possibility to dynamically tune the Rashba energy [42], or
to study unconventional transport properties associated with entanglement
between spin and charge degrees of freedom [43].

The local distribution of the eigenstates can be investigated by calcu-
lating the Local Density of States (LDOS) [44], which is the probability
amplitude as a function of location, in the transverse direction of the rib-
bon. Our results for the LDOS corresponding to the valence band are
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(a) armchair, AVp = 3.04 V/nm (b) zigzag, AVp = 3.04 V/nm
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Figure 3.6: Top: band structure, DOS and transmission with AVp = 3.04
V/nm for (a) an armchair ribbon of width 41 nm and (b) a zigzag ribbon
of width 36 nm. Insets: close up of the edge of the valence band, with blue
crosses to indicate the maxima.

shown in Fig. 3.8. First, we notice that in the absence of a bias field, the
maximum of the valence band is doubly degenerate (due to spin). The local
distribution of the VB states is maximum at the center of the ribbon, and
decays as we approach the ribbon edges (panels (a) and (b)). The situa-
tion is different when an out-of-plane electric field is applied: as discussed
above, due to Rashba coupling the edge of the VB is split into two maxima
around I' (see insets of Fig. 3.6) and the spin degeneracy is broken. The
consequence of this on the LDOS is seen in Fig. 3.8 (¢) and (d). The states
corresponding to the left maximum (panel (c¢)) present a major contribu-
tion of spin down (up) at the left (right) side of the center of the ribbon.
Of course, since time-reversal symmetry must be conserved, the opposite
happens for the states associated with the right VBM (panel (d)).

For the armchair ribbon, for nonzero out-of-plane bias, the two lower
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Figure 3.7: Band edges as function of AVp for an armchair ribbon of
width 41 nm (left) and a zigzag ribbon of width 36 nm (right). Black lines
correspond to the conduction and valence band edges, and orange (blue)
corresponds to the maxima (minima) of the edge states, corresponding to
the crosses in Figure 3.3.

midgap bands move down and the two upper bands move up. For the
zigzag case, however, the two midgap bands that were originally doubly
degenerate, split into two pairs of non-degenerate bands. The edge states
on one side of the ribbon move up in energy, while the states on the other
side move down. This is due to the fact that the sites on one edge of
the ribbon have z-coordinate of 40.82 A and on the other edge —0.82 A,
because of the buckled structure.
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Figure 3.8: LDOS of the valence band maxima for an armchair ribbon of
width 20 nm, under out-of-plane bias. The orange and blue lines correspond
to spin up and down, respectively.

3.4 In-plane transverse bias

Another way to tune the band structure is by applying an in-plane electric
field. This way, we create a transverse bias potential along the ribbon.
To account for a transverse bias AVy, we set in the Hamiltonian (3.1) the
on-site energy to

€Emic = AVT X X, (3.3)

where z; is the coordinate of site 7 in the transverse direction. Our results
for two different values of bias field are given in Fig. 3.9. First, we observe a
band gap reduction for both types of edge termination. The evolution of the
valence and conduction band edges, as well as the position of the extrema
of the edge states, are shown in Fig. 3.10. Notice that the colored lines,
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corresponding to the edge states, are cut when such states can no longer
be distinguished from the conduction or valence band states in the band
structure. Similar to the case of an out-of-plane field, inversion symmetry
is broken along the ribbon, and the edge states are split (see insets of Fig.
3.9).

The main difference with respect to the case of out-of-plane bias is that
the edges of the valence and conduction bands correspond to states that
are located at the edges of the ribbon. This is clearly seen in the LDOS
calculations (Fig. 3.11). While the states that form the valence band edge
are placed at the right edge (see Fig. 3.11 (a) and (b)), the conduction
band edge is located at the left edge of the ribbon, as can be seen in Fig.
3.11 (c) and (d).

As the sites on the edges gain an on-site potential :tAVT%, the edge
states on one side of the ribbon move up in energy, while on the other side
they move down. Otherwise, the shape of the edge states stays the same.

These results are similar to those obtained for a black phosphorus
nanoribbon in the presence of a transverse electric field [30]. The local
separation between the conduction and valence bands states can be quanti-
fied by calculating the polarization [7) P =e), . ricjm oCmios Which yields
(P)yem = 5.61e nm and (P)cpy = —7.25e nm for this configuration.

Moreover, applying a transverse bias causes the valence band to split,
lifting the degeneracy of the predominantly spin up and spin down states
at the VBM. This is due to the fact that Rashba coupling is also present in
this case (see insets in Fig. 3.9), which leads to different spin polarization
of the two extrema of the valence band, represented by different color of
the two VBM (panels (a) and (b) of Fig. 3.11). The armchair CBM also
becomes spin-polarized. For the zigzag case, and for ribbons with W < 62
nm, the CBM is at k = 0, where there is no spin-polarization.
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(a) armchair, AVy = 2.43 V/nm (b) zigzag, AVy = 2.43 V/nm

DOS, 7" (au) k DOS, 7" (au)
(c) armchair, AVy = 7.29 V/nm (d)

k DOS, 7" (au) k DOS, 7" (au)
Figure 3.9: Top: band structure, DOS and transmission for (a) an armchair
ribbon of width 41 nm with AVp = 2.43 V/nm; (b) a zigzag ribbon of width
36 nm with AVp = 2.43 V/nm; (c) an armchair ribbon of width 41 nm with
AVp =729 V/nm and (d) a zigzag ribbon of width 36 nm with AVp = 7.29
V/nm. Insets: close up of the edge of the valence band.
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Figure 3.10: Band edges as function of Vp for (a) an armchair ribbon of
width 41 nm and (b) a zigzag ribbon of width 36 nm. Black lines correspond
to the conduction and valence band edges, and orange (blue) corresponds
to the maxima (minima) of the edge states. The curves corresponding to
edge states are cut when such states can no longer be distinguished from
the conduction or valence band states in the band structure.
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(a) left VBM, AVy =1.82 V/nm  (b) right VBM, AV =1.82 V/nm

(c) left CBM, AVy = 1.82 V/nm  (d) right CBM, AVy = 1.82 V/nm
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Figure 3.11: LDOS of the valence band maxima for an armchair ribbon of
width 20 nm, under transverse bias. The orange and blue lines correspond
to spin up and down, respectively.
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3.5 Conclusion

In summary, we have studied the electronic properties of antimonene
nanoribbons, in the presence of out-of-plane and in-plane electric fields,
using a tight-binding model. We have shown that there is good agree-
ment between ab initio results and the tight-binding model. Our calcula-
tions show that antimonene nanoribbons are semiconducting in their bulk,
i.e., not taking edge states into account. We have found that, contrary to
phosphorene, both kinds of termination, zigzag and armchair, present edge
states inside the gap. Under the application of external bias fields, we have
demonstrated that the gap can be enhanced by applying an out-of-plane
bias. Under a transverse in-plane electric field, the gap decreases. Fur-
thermore, a transverse bias leads to spatial separation between the states
forming the edges of the valence and conduction bands. Both types of
bias cause valence band splitting, due to Rashba coupling induced by lack
of inversion symmetry. Such splitting is accompanied by a different spin
polarization of the two mini-valleys at both sides of I" point.



CHAPTER 4

TUNING 2D HYPERBOLIC PLASMONS IN
BLACK PHOSPHORUS

Black phosphorus presents a very anisotropic crystal structure, making
it a potential candidate for hyperbolic plasmonics, characterized by a
permittivity tensor where one of the principal components is metallic
and the other dielectric. Here we demonstrate that atomically thin black
phosphorus can be engineered to be a hyperbolic material operating in
a broad range of the electromagnetic spectrum from the entire visible
spectrum to ultraviolet. With the introduction of an optical gain, a new
hyperbolic region emerges in the infrared. The character of this hyperbolic
plasmon depends on the interplay between gain and loss along the two
crystalline directions.

This chapter is published as: E. van Veen, A. Nemilentsau, A. Kumar,
R. Roldan, M.I. Katsnelson, T. Low, S. Yuan, “Tuning Two-Dimensional
Hyperbolic Plasmons in Black Phosphorus,” Physical Review Applied
12(1), 014011 (2019).
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4.1 Introduction

Semiconducting two dimensional (2D) crystals are excellent platforms for
tuneable optoelectronics, thanks to their remarkable response to external
electrical and mechanical stimuli [45, 13]. In particular, atomically thin
black phosphorus [46, 47, 48, 49] (BP) has shown extraordinary tuneability
of its optical and electronic properties by several methods [40], like electro-
static gating [50, 51, 52, 53, 54], chemical functionalization [55], quantum
confinement (number of layers) [56], external strain [57] or high pressure
[58, 59]. This allows the control of light-matter interaction in these mate-
rials, in particular the dispersion of collective polaritonic excitations [60].

Apart from being a highly tuneable optoelectronic crystal, the lattice
structure of BP is very anisotropic [45, 61]. The in-plane anisotropy im-
plies optical birefringence, of which the extreme limit would be hyperbol-
icity, where the permittivity tensor has principal components of opposite
sign [62, 63, 64, 65]. Recently, in-plane hyperbolicity was implemented
experimentally in the GHz frequency range using a metallic metasurface
[66]. Moreover, in-plane hyperbolicity in natural van der Waals material
a-MoQOgs was reported and existence of hyperbolic surface polaritons was
experimentally verified [67, 68]. The strong anisotropy of BP suggests it
has potential as a natural hyperbolic material, offering new possibilities
for actively manipulating polaritons in 2D, such as directional plasmons,
light emitters, superlensing effects, [65, 69] etc. In this chapter, we demon-
strate that atomically thin BP can be tuned to become hyperbolic in a
broad spectral range from the entire visible spectrum to the ultraviolet,
using electrostatic tuning, strain or thickness. In addition, the presence of
a bandgap in excess of the optical phonon energy enables using BP as a
possible 2D semiconductor gain medium [70, 71]. With the introduction of
population inversion, we show that optical gain results in a new hyperbolic
region in the infrared. Finally, we study the behavior of plasmons in both
of these hyperbolic regions.
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4.2 Optical Conductivity and Band Model

We describe BP by means of a p,-orbitals tight-binding model fitted to ab
initio GW methods [72, 73], using the Hamiltonian:

H = ZtijCICj + Z thjleCj. (4.1)
i#] i#]
Ten intra-layer t;; and five inter-layer ¢, ;; hopping terms are considered
in the model. The obtained band structure corresponds to an anisotropic
direct band gap semiconductor, with the gap at the I' point of the Brillouin
zone.

The model can be straightforwardly extended to incorporate electro-
static fields. (Eq. 2.4). Strain (Eq. 2.3) can be incorporated using the
dimensionless local electron-phonon coupling 5 ~ 4.5 because this value
was proven to give a matching between ab initio and tight-binding calcula-
tions for the direct-to-indirect bandgap transition under uniaxial strain [74].
The mechanical properties of BP are highly anisotropic, with the zigzag di-
rection being about four times stiffer than the armchair direction [75, 57].
Therefore we use uniaxial strain along the armchair direction for our cal-
culations, accounted for by the strain tensor eac = eyydiag(yﬁc, 1, —vA0),
where the Poisson ratios v are estimated to be v2C ~ 0.2, and v2¢ ~ 0.2
[75]. We note the importance to consider the out-of-plane Poisson ratio v,
in our calculations, that accounts for the widening (flattening) of the lattice
under compressive (tensile) strain.

The optical conductivity in the zigzag (0,,) and armchair (oy,) direc-
tions is given by the Kubo formula (Eq. 2.8). In that equation, we can
replace the Fermi distribution f(F) with a quasi-equilibrium distribution
ng(E, Ap) to introduce population inversion, which will produce optical
gain [76, 77]:

ne(E, Ap) = (E)f(E + 22 4 Ap) + 0(~B)f(E "2~ Aw),  (42)

where Ej is the band gap and Ay is the photo-doping value.
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Figure 4.1: (a) The imaginary part of the optical conductivity of bilayer
black phosphorus in units of og = g—e}f, showing a hyperbolic region (shaded)
where Im(oy,) x Im(oyy) < 0, starting at w = 2.8 eV. (b) The real part of
the conductivity corresponding to (a). The dashed lines show a fit of the
conductivity around the second peak, using the Fano model as described
in the text, with resonance width I',.s = 0.1 eV, Fano parameter qp =
1.5eV~! and n = 3. (c) The corresponding band structure, with optical
excitations indicated in red, causing the two optical peaks at w = 1.2 eV
and w = 2.6 V.
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4.3 Hyperbolic Regions

We first define the condition for hyperbolicity. We note that the real part
of the dielectric permittivity is proportional to Im(o), a consequence of
current continuity. Then, a hyperbolic region appears when

Im(ozz(w)) x Im(oyy(w)) < 0. (4.3)

On the other hand, Re(o), is directly proportional to the optical absorption
of the free-standing 2D layer. For pristine bilayer BP, the optical conduc-
tivity components are plotted in Fig. 4.1. The first thing we observe is that
the peculiar puckered structure of BP leads to a strong linear dichroism,
i.e., a large difference in optical conductivity for incident polarized light
along armchair and zigzag directions [78]. For a bilayer sample, its optical
absorption revealed two sharp peaks along the armchair direction, due to
the two interband excitations indicated in red in the band structure. These
resonant-like features, for light polarized along the armchair direction, has
also been observed experimentally [79]. On the contrary, light polarized
along the zigzag direction shows a featureless monotonically increasing op-
tical absorption instead. Whereas Im(o,,) is negative throughout the spec-
trum, Im(oy,,) goes from negative to positive around wy, = 2.8 eV, which
results in a hyperbolic region starting at that frequency.

The sign change in Im(oy,) along the armchair direction is key to the
appearance of the hyperbolic region as indicated in Fig. 4.1. This can
be traced to the resonant-like feature in the optical absorption Re(oy,) at
wres = 2.6 eV. The spectral shape of Re(ayy) can be described by a Fano

resonance curve
O Ry ~ (QFFres/Q +w— Wres)2
Y (Fres/2)2 + (w - Wres)z

and setting op 4, ~ w". A fit of these curves to the region around the second
peak in the optical conductivity of bilayer BP is shown by the dashed lines
in Fig. 4.1. Its Kramers-Kronig pair, which correponds to Im(oy,), reveals
a sign change after w,.;. Hence, we can attribute the origin of hyperbolicity
to the strong and anisotropic resonant-like interband transitions.

(4.4)
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Monolayer

Monolayer, strain -5%
Monol., bias 4.3 V/nm
Monolayer, 1 = 1.0 eV
Bilayer

Bilayer, strain -5%
Bilayer, strain 5%
Bilayer, bias 1.0 V/nm
Bilayer, bias 2.6 V/nm
Bilayer, = 0.7 eV
Bilayer, p = 1.4 eV
Bilayer, Ay = 0.5 eV
Trilayer

Tetralayer

Figure 4.2: The hyperbolic region (indicated in black lines) for different
tuning parameters. The visual spectrum is indicated in color.

Since the origin of the hyperbolicity is related to the strong resonant-
like anisotropic interband absorption between the largest conduction and
valence subband indices, one expects that the spectral range of hyperbolic-
ity can be tuned with band structure engineering. Indeed, the onset of the
hyperbolic region wy, can be tuned with the number of layers, strain, bias
and doping (Fig. 4.2). Under compressive strain (Fig. 4.3(cd)) the band
gap of bilayer black phosphorus becomes smaller. As a result, the optical
peaks shift to lower frequencies and wy, goes down. The introduction of bias
breaks the mirror symmetry in the z-direction, which allows for new hybrid
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transitions [79], as indicated in the band structure (Fig. 4.3(ef)). Moreover,
the bands closest to the Fermi energy get pulled closer together, but the
next pair of bands get pushed away from one another. This causes the
hyperbolic region to go up at first, and then move to lower frequencies as
the new peak in the middle gains amplitude. Moreover, wj, goes up for an
increasing number of layers, because extra layers add peaks to the optical
conductivity in the armchair direction, and the hyperbolic region appears
after the last peak. Finally, for increased doping, wy moves further up, as
the first peak becomes less prominent due to Pauli blocking.

If we introduce population inversion (Eq. 4.2, Fig. 4.4), however, the
situation becomes qualitatively different: a new hyperbolic region appears
in the infrared range. Here, we assume that the quasi-Fermi levels are
equal for electrons and holes, and that the electron and hole baths can
be described by a common temperature (see Fig. 4.4(c)). Optical pump-
ing [80, 81], where electrons and holes are generated in pairs, in a charge
neutral system with particle-hole symmetry, would fit such scenario. The
optical gain causes Re(oyy) to become negative. The spectral window where
Re(oyy) < 0 roughly coincides with E,; < w < E4 + 2Apu, where there opti-
cal transitions between the population inverted electron and hole bands are
allowed. In the region up to w = 1.27 eV, we find that Im(o,,) > 0. In the
zigzag direction, the real part of the conductivity also flips sign between
E, < w < Ey+ 2Ap. The imaginary part in this direction, on the other
hand, remains negative throughout the entire frequency range, causing a
new hyperbolic region in the infrared.
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Figure 4.3: The optical conductivity and band structure of bilayer black
phosphorus (ab) without strain or bias; (cd) with strain e, = —5%; (ef)
with a bias of 2.6 V/nm. Optical excitations are indicated in red.



Hyperbolic Regions

45

2
E 0
S I
—92 4—— Re(0zz) ‘\," — Re(oyy)
- Im(o'zz) = Im(ayy)
0 1 4 5
w (eV)
; 2
0.1{(®)1 N %//
= 0.0 = L0
b 11
e . < A”A
-, - ) d
E, 15 r
w (eV) k

Figure 4.4: (a) The optical conductivity of bilayer black phosphorus with
photo-doping Ap = 0.5 eV. (b) A close-up of the region where Re(oy,) <
0, showing a new hyperbolic region (shaded) for w < 1.27 eV. (c¢) The
corresponding band structure around the I'-point, with the population-
inverted pockets shown in blue and orange.
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4.4 Hyperbolic Plasmons.

Finally, let us consider characteristics of plasmons that can be supported by
a hyperbolic material. We assume that the plasmon propagates at an angle
x with respect to the x-axis, where the plasmon wavector takes the form

q = qze: + qye, +ie,y, where ¢, = g cosx, g, = qsinx, q = /¢ + ¢
The dispersion relation for the hyperbolic plasmon takes the form [65, 63]

QE = ’72 + k(Q)v (45)

where

ko 2 o
7= 204q [(770 * 2 Umayy)

9 2
+ \/( + noamayy> —40qq011 | » (4.6)
m 2

k3 = w?uopeo, mo = /g—g is the impedance of free space, and

0qq(X) = Oua cos? y + Tyy sin? y, (4.7)

011(X) = Oz sin? x + Oyy cos? x.

The iso-frequency contours (w(gs, ¢y) = constant), calculated using Eq.
(4.5), are presented in Fig. 4.5. We consider the cases of BP with gain
(022 = (0.07 — i6.4) x 107209, o4y = (—0.03 + i0.60)00) and BP under
strain (o4, = (0.20 — 0.31)0g, oyy = (0.20 4 i0.54)0¢). It can be seen
from Figs. 4.5(a,b) that only in the case of BP with gain the iso-frequency
contour resembles a hyperbola with the asymptotes defined as

Im(o,y)

tan xo = ‘ (4.9)

Im(oyy) |

For BP under strain, the iso-frequency contour resembles a figure eight
shape, even though the hyperbolicity condition (4.3) is met.
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This behavior stems from the fact that the hyperbolic shape of the iso-
frequency contour is related to the poles of the denominator in Eq. (4.6),
defined by zeros of oqq (i.e. when oqq — 0, then |y| — oo and |g| — 00).
In particular, it is straightforward to demonstrate that in the case of a
purely imaginary conducitivity tensor (i.e. no losses or gain) the condition
0qq = 0 leads to Eq. (4.9) for hyperbola asymptotes.
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Figure 4.5: Iso-frequency contours and figures of merit for hyperbolic ma-
terials with gain (Ap = 0.5 V) and strain (e, = —5%), calculated using
Eq. (4.5). The hyperbola asymptotes (orange dashed lines) are defined
using Eq. (4.9).

If the components of the conductivity tensor are both lossy
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(Re(0za,yy) > 0) or both have gain (Re(0uz,yy) < 0), the module of the
conductivity, |oqql, is never zero. In fact, for the hyperbola asymptote an-
gle X0, |oqq(x0)| = [Re(04z)| cos® xo + |Re(0yy)|sm2 Xo- Thus, |ogq(x0)|
increases with the increase of |Re(0zq,yy)| both for the lossy material and
the material with gain. This leads to the decrease of g|(xo) and, eventually,
destroys hyperbolicity when either losses or gain are too high. For example,
this is the case in BP with strain presented in Figs. 4.5(b,d). The high
losses of the material in the hyperbolic regime lead to the hyperbola fold-
ing into a figure eight shape iso-frequency contour. Moreover, the plasmons
itself are very lossy in this case as is quantified by ratio Reg/Img in Fig.
4.5d.

The case where one of the components of the conductivity tensor is lossy
(Re(ozz) > 0, while the other has gain (Re(oy,) < 0), requires separate
consideration. In this case, 0qq(X0) = |Re(0z:)| cos? xo — [Re(ay,)| sin? xo.
When both the losses and the gain are small, then |o4q(X0)| is small as well
which allows for the iso-frequency contour to preserve the hyperbolic shape,
as is the case for BP with gain presented in Fig. 4.5(a,c). This is, however,
a rather trivial case which can be observed in pure lossy materials when
the losses are small [65]. A non-trivial property of a material with gain
is that ogq = 0, when tanxo = \/|Re(0z2)|/ [Re(oy,)|. That condition,
together with Eq. (4.9), indicates that the iso-frequency contour preserves
its hyperbolic shape for arbitrary large losses and gain, as long as the
following holds true,

Oze = —0yy tan xo. (4.10)

This criterion can be verified through its iso-frequencies contours. To
illustrate this, we choose BP under strain, and assume that a gain was
added to the y-component of the BP conductivity, with the gain values
(Re(oyy)) indicated in the legend of Fig. 4.6. Due to high losses, the
iso-frequency contour of BP under strain does not resemble a hyperbola.
Countering the high losses with high gain is not beneficial for restoring the
hyperbolic plasmons (see Fig. 4.6(a)) as this leads to a high magnitude of
0qq- However, we can recover the hyperbolic mode by matching 0., to o,y
using Eq. (4.10), as can be see from Fig. 4.6(b) (Re(oyy) = —0.3300). A
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Figure 4.6: Iso-frequency contours for hyperbolic materials with different
values of gain. o,; = 0.20 —i0.3109, oyy = Re(oyy) + i0.5400. Re(oyy) is
indicated in the legend on the panels (a), (b).

further decrease of gain breaks the resonance condition (4.10) and leads to
distortion of the hyperbola (—0.160¢ and —0.0160¢ in Fig. 4.6(b)).

4.5 Conclusion

In conclusion, we showed how black phosphorus can be made hyperbolic
across a broad spectral range, in particular in the visible wavelengths. We
have shown how the spectral location of these hyperbolic regions can be
tuned via electrostatic bias and strain. We also studied the influence of
optical gain on the hyperbolic plasmons and showed the appearance of a
new hyperbolic region in the infrared. The ease with which these plasmons
can be tuned opens up new opportunities for 2D nanophotonics.
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CHAPTER 5

QUANTUM TRANSPORT IN SIERPINSKI
CARPETS

Recent progress in the design and fabrication of artificial 2D materials
paves the way for the experiments on electron systems moving on complex
geometries, such as plane fractals. In this chapter, we calculate the
quantum conductance of a 2D electron gas roaming on a Sierpinski carpet
— a plane fractal with Hausdorff dimension intermediate between one
and two. We find that the fluctuations of the quantum conductance as
a function of energy are a fractal graph. Its dimension can be chosen
by changing the geometry of the Sierpinski carpet. This behavior is
independent of the underlying lattice geometry.

This chapter is published as: E. van Veen, S. Yuan, M.I. Katsnel-

son, M. Polini, A. Tomadin “Quantum transport in Sierpinski carpets,”
Physical Review B 93, 115428 (2016).
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5.1 Introduction

Recently a variety of experimental protocols have become available, that
can be used to create artificial 2D lattices for electrons, atoms, and photons.
For example, schemes for creating artificial hexagonal lattices [82] allowed
to observe a wealth of interesting phenomena, such as Mott-Hubbard split
bands [83], massless Dirac fermion behavior modified by pseudo-electric and
pseudo-magnetic fields [84], and photonic Floquet topological insulating
states [85]. In the case of ultracold atomic gases loaded in hexagonal optical
lattices, recent progress has even led to an experimental study [86] of the
Haldane model [87].

More generally, in the context of solid-state implementations, a com-
bination of e-beam nanolithography, etching, and metallic gate deposi-
tion [88, 89, 90, 91, 92, 93, 94] can yield high-quality 2D patterns with
arbitrary, non-periodic shape in semiconductor heterostructures (such as
GaAs/AlGaAs) hosting ultra-high mobility 2D electron gases (EGs). Ul-
timately, these procedures yield an external potential landscape with the
desired geometry that acts as a potential well to trap electrons. Synthetic
solid-state quantum materials can also be created by utilizing scanning
probe methods [84].

Most notably, recently a Sierpinski gasket was made on the nanometer
scale by controlled positioning of CO molecules on a copper surface using
scanning tunneling microscopy [95].

Another way to improve spatial resolution is by using bottom-up
nanofabrication methods such as nanocrystal self-assembly [96]. Both the
local electronic structure [97] and the geometry of the system [98] can be
designed by careful choices of precursor molecules and reaction parameters.
In particular, usage of building blocks with chiral bondings on a substrate
with a compatible symmetry allowed the assembly of molecular Sierpinski
gasket (SG) fractals [98]. These experimental achievements motivate the
theoretical investigation of complex 2D structures, with the aim of discov-
ering novel transport and optical features which could enable or improve
technological applications.

In this chapter, we present a theoretical study of the transport prop-
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erties of a 2D electron gas (2DEG) in a Sierpinski carpet (SC), which is a
2D self-similar structure [99]. Macroscopically, the self-similarity of the SC
is quantified by the fact that its Hausdorff dimension [99] dy (i.e. a gener-
alization of the topological dimension) is between one (a line) and two (a
plane), which makes the SC a fractal [100]. By varying the parameters N
and L of the geometrical construction of the fractal, a family of SCs with
different dimensions can be generated. At a microscopic level, any physical
realization of a 2DEG in a SC will involve electrons hopping on a lat-
tice. Here, we have considered three different underlying lattice structures,
i.e. triangular, square, and hexagonal lattices. The latter case is particu-
larly relevant, since it models a top-down nanofabricated SC obtained by
etching a graphene sheet.

Contrary to electrons hopping on Bloch translationally-invariant lat-
tices, the SC hosts both extended and localized electronic states in nar-
row energy ranges. Phase-coherent electronic transport through the SC,
thus, depends on the carrier energy and on the geometric matching be-
tween lead positions and profiles of the extended electronic states, depend-
ing on the lead positions and their widths, and displays fractal fluctua-
tions [101, 102, 103, 104, 105] as a function of energy, in the absence of a
magnetic field. We will also find that extended states, which are responsible
for large conductance values, are quite robust to elastic disorder.

Whereas the vast majority of the literature on fractal conductance fluc-
tuations (CFs) considers geometrically simple structures such as billiards,
here we find that, in a SC, the fractal dimension of the sample determines
the fractal dimension of the CFs.

While brownian motion and the heat diffusion equation on fractal ge-
ometries have been extensively studied in the literature [106, 107, 108], the
transport properties of electrons roaming on such complicated geometri-
cal structures have comparatively received less attention. More precisely,
some analytical [109, 110] and numerical [111, 112, 113, 114] studies of the
conductance of electrons in Sierpinski fractals have appeared in the liter-
ature. We stress that the problem of quantum particles moving in a SC
is very different from that of a quantum particle displaying a self-similar
spectrum. Such problems are very well studied in physics, a paradigmatic
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example being that of the Hofstadter butterfly spectrum [115] displayed by
an electron moving in 2D under the combined effect of a periodic potential
and a perpendicular magnetic field. Finally, we are not interested in the
statistical distribution of eigenvalues and the nature of the corresponding
eigenstates of electrons in plane fractals, which have been studied in de-
tail [116, 117, 118, 119, 120]. Rather, our aim is to unveil fundamental dc
transport characteristics, which can be measured in artificially-fabricated
SCs with current technology.

5.2 Method

We model a 2DEG in a SC by means of a single-orbital tight-binding Hamil-

tonian:

H=—-t Z c;r’gcj’g. (5.1)

(i,3),0

This Hamiltonian describes electrons with spin ¢ =7, | hopping between the
nearest-neighbor sites (i, j) of a SC. Nanopattering a SC on the surface of a
semiconductor hosting a high mobility 2DEG is expected [83, 88, 89] to yield
t of the order of a few meV, while protocols based on STM manipulation [84]
are expected to yield ¢ ~ 100 meV. For the sake of simplicity, we ignore
magnetic fields and electron-electron interactions, which are expected to
lead to very interesting quantitative and qualitative effects. Conductance
and wave function calculations are performed using KWANT [6].

5.3 Fractal geometry

Fractals are made using an iterative process. We can either take a top-down
approach (which corresponds to using etching techniques) or a bottom-up
approach (corresponding to for example self-assembly). Taking the bottom-
up approach, to make a standard SC, a previous iteration is copied N' = 8
times to make a next iteration that is £ = 3 times wider (Fig. 5.2). The
Hausdorff dimension is then given by dy = log, N. It describes the scaling
behavior of the fractal, and gives a measure of how space-filling it is.
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Each discretized SC is characterized by the iteration step I, its underly-
ing lattice structure (square, triangular, or hexagonal), the lattice constant
a, and either its total width in unit cells W (in the case of top-down con-
struction — see Fig. 5.1) or the size of its starting square S (in the case of
bottom-up construction — see Fig. 5.2). For the square lattice SC, these
last two numbers are related with W = S x 37.

For comparison, we will also consider fractals other than the SC, namely
the Sierpinski gasket (SG) and Vicsek fractals [117, 121], as shown in
Fig. 5.2. For the standard carpet dg ~ 1.89, for the gasket dy ~ 1.58
and for the Vicsek fractal dg =~ 1.46.

Fig. 5.3 shows the different lead configurations. The leads always have
the same width as the starting cell S, or on the top-down case, the same
width as the narrowest channel in the scattering region itself.

Fig. 5.4 shows how to generate SCs with different dimensions. Panel
(a) corresponds to N' = 8 and £ = 3 with dimension dy ~ 1.89. (b)
corresponds to N’ =12 and £ = 4 with dimension dy ~ 1.79.

We have calculated the energy dependence of the two-terminal con-
ductance G(E) of the tight-binding model (5.1) for a configuration with
centered leads and with diagonal leads. We first focus on the simplest case
of the square lattice SC. Then we present results on the triangular and
hexagonal lattices, and finally we move on to the SG and Vicsek fractal.
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A
Y

square triangular hexagonal

Figure 5.1: (a) Top-down construction of a SC. The black squares represent
regions that are removed from the white sample at iteration I = 0. At the
I-th iteration we remove N copies of the regions removed at the (I — 1)-th
iteration, after scaling them down in linear size by a factor £ (here N =8
and £ = 3). For a number of iterations I > 1 we obtain an approximation
of the SC. (b) The square, triangular and hexagonal underlying lattices
considered in this chapter. The width of the sample is W unit cells.
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Figure 5.2: (a) Bottom-up construction of a SC with base size S = 2.
(b) Iteration I = 3 of the Sierpinski gasket with base size S = 3 and (c)
iteration I = 3 of the Vicsek fractal with base size S = 1. For each iteration
I, the previous iteration I — 1 is shown in orange; the lattice constant is a.
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Figure 5.3: SCs with (a) centered and (b) diagonal leads (shown in blue).
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Figure 5.5: density of states of SCs with different underlying lattices for
an SC with N =8 and £ = 3. (a) Square [ = 4, W = 162, (b) triangular,
I =4, W =284 and (c) hexagonal with I =4, W = 284.
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5.4 Results

5.4.1 Density of states

For small systems, the density of states is obtained by exactly calculating
the Hamiltonian eigenvalues. For large systems with more than 10° sites,
we use the tight-binding propagation method (Eq. 2.35).

Fig. 5.5 shows the density of states of SCs for different lattice geometries.
Because of the absence of translational invariance, it is not possible to
represent the eigenvalues of the Hamiltonian in terms of a conventional
band structure diagram. A few general observations can still be made on
the spectrum of the Hamiltonian. On the square lattice, the Hamiltonian
is particle-hole symmetric and the spectrum of eigenvalues extends from
—4t to 4t for a bandwidth equal to 8¢. The Hamiltonian on the honeycomb
lattice is also particle-hole symmetric, and its eigenvalues range from —3t
to 3t. Notably, the density of states does not display a gap in this case,
but instead a edge state peak at £ = 0. This is at odds with the case
of antidot lattices created by piercing a hexagonal lattice with regularly
spaced holes [122], where a gap is opened up in the well-known graphene-
like density of states. On the triangular lattice, eigenenergies range from
—6t to 3t.

5.4.2 Conductance

The quantum conductance G of a square-lattice SC as a function of energy
F is shown in Fig. 5.6. We show an energy range smaller than the whole
bandwidth to distinguish the single peaks in the profile. In an experimental
situation, the energy E is determined by the gate potential. In panel (a)
we clearly see that the two-terminal conductance G(E) is equal to 4e?/h
for E = 0, where a conductive extended state is present [109]. This is
because, with central lead positions, electrons of a given spin injected on
the left side of the SC can reach the right side by following two equivalent
paths, Fig. 5.7(a), each carrying a conductance quantum, without being
backscattered by the inner holes of the SC. On the other hand, as we can
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Figure 5.6: Energy dependence of the conductance G(F) of a square-lattice
SC with N =8, £L=3,1 =3, and W = 54 for (a) central and (b) diagonal
lead positions.
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Figure 5.7: Three examples of scattering wave functions in the SC at (a)
E=0.02t, (b) E=0.06t and (c) E=0.08t.
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Figure 5.8: An illustration of the box-counting algorithm.

see from Fig. 5.6(b), the SC can be insulating (i.e. G = 0) at the same
energy, when probed with leads in a diagonal configuration, which do not
couple to the conducting state.

5.4.3 Box-counting algorithm

The roughness of the CF graph increases with the iteration step I of the
construction of the SC. As [ is increased, finer and finer CFs appear, at
progressively smaller energy scales. This suggests that the CF graph is
actually a fractal, with a dimension larger than its topological dimension
(one). The dimension of the CF graph can be quantified by using a box-
counting (BC) algorithm [103]. This algorithm counts the number N of
squares of size ¢, which are necessary to continuously cover the graph of
G(E) (in units of €?/h) rescaled to a unit square (see Fig. 5.8). In general,
points in the plane (log N, —logd) are expected to fall in three distinct
regions. For large values of §, the squares are too large to distinguish the
features of the graph and N grows slowly as § decreases. For very small
values of 9, the squares are so small that they resolve the single points in
the set of data belonging to the CF graph: in this case N is expected to
saturate to the number Ny of points in the energy mesh where G(E) is
evaluated. Finally, there is an intermediate region (usually called “scaling
region”) where scaling is linear in a log-log plot, i.e. where N ~ §~¢. The
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Figure 5.9: (a) BC algorithm analysis of the conductance fluctuations
for SCs with I = 4, and W = 162, for central (blue, +) and diagonal
(orange, x) leads. The horizontal dotted lines represent the saturation
value N = Ng, with Ny = 3 x 10%. The slope of the dashed line has
been set equal to the Hausdorff dimension dy ~ 1.89 of the SC. (b) BC
dimension d of the conductance fluctuations for square-lattice SCs with
different dimensions for I = 3, S = 2 (solid markers) and I = 4, S = 2
(outlined markers), for central (blue, 4+) and diagonal (orange, x) leads.
The dashed line represents d = dy.

slope d in the scaling region is the BC estimate of the dimension of the CF.

In Fig. 5.9, we show the results of the BC algorithm for the CFs of
a square-lattice SC with N' = 8 and £ = 3. The analyzed CFs clearly
show a fractal dimension 1 < d < 2 over a scaling region of more than
two orders of magnitude. The fractal nature of the CF graph stems from
the coexistence of extended and localized electron wavefunctions in narrow
energy ranges [101, 103]. We stress that localized electron wavefunctions
emerge in our SC, and even in the much simpler Sierpinski gasket [117] (see
below), in the absence of elastic disorder, because of scattering of electrons
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against the inner holes of the SC. Most importantly, we find that the results
of the BC algorithm are independent of the lead positions. This allows us
to claim that the dimension of the CF graph is an intrinsic property of the
sample geometry.

In Fig. 5.9(b), we show the BC algorithm estimate of the fractal di-
mension d for SCs with different dimensions. BC algorithm analyses for
I =3 or I =4, or for different lead configurations, yield values of d which
differ by a few percent. However, d substantially depends on the Hausdorff
dimension dy; of the SC. A reasonable conjecture, supported by our numer-
ical results, is that d = dy for I > 1. It is remarkable that the analysis
of CFs carries information on the SC geometry, down to very small length
scales. Conversely, these results show that it is possible to fix the fluctu-
ation spectrum of the quantum conductance by choosing an appropriate
SC. This evidence that the fractal dimension of the sample determines the
fractal dimension of the CF graph is the main result of this chapter.

Fig. 5.10 details how the data from the BC algorithm is used to calculate
the BC dimension. Our estimate for the BC dimension is obtained by a
best-fit procedure to the set of points (—log;y(9),log;o(N)) given by the
BC algorithm. Here, N is the number of boxes of size § needed to cover
the graph of a conductance fluctuation curve. We point out that we always
rescale the conductance curves to the unit square [0, 1] x [0, 1] before the
analysis is applied.

The linear fit to the data is performed in an interval centered in the
scaling region. The extent Alog;(d) of the fitting interval is then changed
to provide several different best-fit results. The whole scaling region has
an extent Alog;y(d) ~ 2.5.

The results presented in Fig. 5.9 correspond to the average of the values
d as the extent of the fitting interval is changed. Panel (a) shows the BC
dimension d as a function of the extent Alog;y(d) of the interval where
the linear fit is calculated. Panel (b) shows the relative difference between
the calculated BC dimension d and the expected value dy. In both panels,
orange (blue) data corresponds to N' =8 and £ =3 (N =12 and £ = 4)
with I = 4 and W = 162 (W = 512). The result of the linear fit is very
robust as we change the extent of the fitting interval to cover the entire
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Figure 5.10: Estimation of the fractal dimension from the BC analysis for
square SCs with dig ~ 1.89 (blue) and dy ~ 1.79 (orange). The results for
central leads are shown in dashed lines, dotted lines correspond to diagonal
leads. (a) BC dimension d as a function of the extent Alog;y(d) of the
interval where the linear fit to the BC data is calculated. The orange (blue)
solid line corresponds to the conjectured value dg = 1.89 (dy = 1.79). (b)
Relative difference between the calculated BC dimension d and the expected

value dy.

scaling region, over more than two orders of magnitude. The estimate of
the dimension obtained with the linear fit matches the expected value dy
(i.e. the dimension of the SC) with an accuracy of a few percent in the

whole scaling region.
In Fig. 5.11, we test the generality of our findings by extending our nu-

merical analysis to SCs with underlying triangular and hexagonal lattices.
From Figs. 5.11(a) and (b) we clearly see that the conductance graphs
of triangular- and hexagonal-lattice SCs are strikingly different from each
other and from the conductance graph of square-lattice SCs. A gap appears
in the conductance spectrum G(FE) of the hexagonal-lattice SC, where the
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Figure 5.11:  Conductance graphs for a center-lead configuration (a)
hexaconal-lattice SC with NV = 8, £L = 3, I = 4, and W = 284; (b)
triangular-lattice SC with N' =8, £ =3, I = 4, and W = 284. Also shown,
the corresponding BC algorithm analyses for (¢) the hexagonal-lattice SC
and (d) the triangular-lattice SC. Results for both center (blue, +) and
diagonal (orange, x) leads are shown.
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conductance vanishes entirely. We point out, however, that the correspond-
ing density of states of the hexagonal-lattice SC does not display a gap.

It is remarkable that, despite the different appearances, the conductance
fluctuations in all three cases yield very similar BC algorithm results. In
particular, the estimated BC dimension of triangular- and hexagonal-lattice
SCs is compatible with our conjecture d = dy.

5.4.4 Persistence of conductive states in disordered SCs

Fig. 5.12(a) shows the energy dependence of the conductance G(E) of a
square-lattice SC in the presence of localized elastic disorder. A single-site
vacancy is created along the path of the conductive state shown in Fig.
5.7(a). We see that, despite such a strong, localized disorder source, G(E)
still reaches its maximum value G(E) = 4e?/h at E = 0.

Fig. 5.12(b) shows G(E) in the presence of smooth elastic disorder. The
following potential term has been added to the Hamiltonian:

V= Zu(ri)czﬁcw i (5.2)

The profile u(r;), shown in Fig. 5.12(c), varies on a substantial energy scale,
fixed to 20% of the hopping amplitude. When compared to the conductive
bulk path in the absence of disorder, shown in Fig. 5.7, we see that the
profile of the eigenstate is surprisingly robust. More precisely, we notice a
weak hybridization with localized wavefunctions at the corners of the SC,
but the main bulk paths of the unperturbed conductive wavefunction are
clearly visible and connect the left and right side of the SC, where the
leads are located. This explains why the conductance around E = —0.063t
almost reaches its maximum value. We conclude that the conductance of
the 2DEG in a SC is robust with respect to both localized and smooth
elastic disorder.

For a geometry with a smooth disorder potential varying on an energy
scale up to 20% of the hopping amplitude, we have verified that the conduc-
tance fluctuations display a fractal dimension which is comparable to that
in the clean SC and is weakly dependent on the strength of the potential.
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Figure 5.12: (a) Conductance of a square-lattice SC, with a single-site
vacancy with spatial coordinates r; = (10a, 18a). (b) G(E) in the presence
of the smooth elastic potential p(r;) shown in (c). The colorscale in (c)
varies from —0.1¢ (blue) to +0.1¢ (red). (d) conductive eigenstate at energy
E = —0.063t in the presence of the smooth elastic potential.
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Figure 5.13: Energy dependence of the conductance G(E) (in units of e /h)
for: (a) the Sierpinski gasket with I = 8 and W = 256 and (b) the Vicsek
fractal with I = 6 and W = 1458. The inset in (a) shows a magnification
of the cluster of peaks around E/t ~ 1.

5.4.5 Other fractals

Finally, to shed further light on the origin of the fractal CFs, we calculate
the quantum conductance of two fractals which do not belong to the family
of SCs. The BC algorithm analysis applied to the CFs of the gasket and
Vicsek fractal as shown in Fig. 5.2(b,c). We see that both geometries
feature fractal CFs, but the difference between d and dy in the case of
the gasket and Vicsek fractal is sizable contrary to the case of a SC. For
increasing I, the box counting dimension of the conductance fluctuations
of the gasket converges to d = 1.22 (dy = 1.58), and for the Vicsek fractal
to d = 1.69 (dg = 1.46). Moreover, the gasket and Vicsek fractals show
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Figure 5.14: BC analysis for (a) a gasket with I = 8 and W = 256 and (b)
a Vicsek fractal with I = 6 and W = 1458. The slope of the dashed line has
been set equal to the Hausdorff dimension of the samples. Results for two
different lead locations are shown with different symbols. (c¢) Finite-size
scaling of the fractal dimension for the Sierpinski gasket and the Vicsek
fractal. The symbols show the BC dimension d of the gasket (orange) and
Vicsek fractal (blue) as the number I of iterations in the generation of the
fractal is increased. The dashed lines mark the values of the Hausdorff
dimension dip = 1.58 and dig = 1.46 of the gasket and Vicsek fractal,
respectively.

multiple extended regions where the conductance is zero, whereas for the
carpets the conductance fluctuates heavily over the entire energy range,
except around F = 0 for the hexagonal-lattice case.

Fig. 5.13 shows the energy dependence of the conductance G(E) for the
Sierpinski gasket and the Vicsek fractal. For these structures the profile of
the conductance is characterized by many intervals where the conductance
vanishes. This behavior is different from the conductance of the SC, which is
non-zero in a broad energy interval. The intervals of vanishing conductance
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appear to have a self-similar geometry, as suggested by the inset of (a),
where it is seen that the conductance in the interval 0.9 < E/t < 1.2
features four cluster of peaks, just like in the whole interval —3 < E/t < 2.
This is further demonstrated by applying the BC algorithm, which yields
a non-integer dimension d.

Fig. 5.14(c) shows the BC dimension d for the conductance fluctuations
of the gasket (orange) and Vicsek fractal (blue) as the number I of iterations
in the generation of the fractal is increased. The crosses show the result of
the BC analyses, the dotted lines are a guide to the eye, and the arrows
mark the values of the Hausdorff dimension diy = 1.58 and di = 1.46 of the
gasket and Vicsek fractal, respectively. The figure shows that the estimate
of d for the gasket is largely independent of I, and that convergence is
achieved for the Vicsek fractal when I 2 10. In both cases, the estimated
BC dimension d is substantially different than the Hausdorff dimension dy;.
More precisely |d — dg| 2 10% for the gasket and Vicsek fractal, while
|d — du| < 2% for the SCs.

A qualitative difference between the SC and the gasket/Vicsek fractal
is the value of their ramification number [123], i.e. the number of bonds
that must be cut in order to isolate different iterations of the lattice. This
number gives a measure of how connected the fractal is. For the gasket
and Vicsek fractal, the ramification is finite, while for the SC it is infinite.
For fractals with finite ramification it is possible to give analytical solu-
tions to the Schrédinger equation [117], while general fractals with infinite
ramification are not amenable to analytical treatments. These two types
of fractals can have widely different properties. For example, it has been
found that infinitely ramified fractals exhibit phase transitions not present
in finitely ramified fractals [123]. The relation between the dimensions of
the samples in the SC family and of the corresponding CF's is possibly a
consequence of the infinite ramification of the SC. Intuitively, electrons in
a SC explore a larger portion of the available phase space, and thus their
conduction properties are more closely related to those of the sample.
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5.5 Summary

We have studied the conductance of self-similar samples. Using a box-
counting algorithm on the conductance graph, we found that its fractal
dimension is approximately equal to the geometric Hausdorff dimension of
the sample. This result holds for SCs with different lead positions, differ-
ent underlying lattices, different d and with a vacancy or smooth disorder.
However, for the SG and Vicsek fractals we found that these dimensions
do not match. A probable explanation is that the SC is infinitely rami-
fied, meaning that the lattice is very well connected and the electrons can
probe the entire sample, whereas the other two fractals are finitely ramified
making it harder for the electrons to travel far. Although more work is
necessary to establish this connection at a formal level, we believe that our
results motivate careful transport studies of planar fractal devices.



CHAPTER 6

OPTICAL AND PLASMONIC PROPERTIES
OF SIERPINSKI FRACTALS

The optoelectronic and plasmonic properties of fractal quantum electron
systems are largely unexplored. In this chapter, we calculate the optical
conductivity of a two-dimensional electron gas in a Sierpinski carpet (SC).
We show that the optical conductivity converges as a function of the
fractal iteration. The calculated optical spectrum features sharp peaks at
frequencies determined by the smallest geometric details at a given fractal
iteration. Each peak is due to excitations within sets of electronic state-
pairs, whose wave functions are characterized by quantum confinement
in the SC at specific length scales, related to the frequency of the peak.
Moreover, we calculate the full dielectric functions of the Sierpinski carpet
and gasket. We show that the Sierpinski gasket features highly localized
plasmon modes with a flat dispersion. This strong plasmon confinement
can provide a novel setting for manipulating light at the quantum level.

This chapter is published as: E. van Veen, A. Tomadin, M. Polini,
M.I. Katsnelson, S. Yuan “Optical conductivity of a quantum electron
gas in a Sierpinski carpet,” Physical Review B 96, 235438 (2017), and
as T. Westerhout, E. van Veen, M.I. Katsnelson, S. Yuan “Plasmon
confinement in fractal quantum systems,” Physical Review B 97, 205434
(2018).
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6.1 Introduction

As discussed in the previous chapter, recent advances in nanofabrication
methods have made it possible to create multi-scale two-dimensional (2D)
structures, which are geometrically defined down to the nanometer scale,
and yet feature excellent electronic quantum conduction properties on mi-
crometer length scales.

However, to the best of our knowledge, no theoretical study has ever
addressed the optical and plasmonic properties of quantum electron systems
in a fractal structure. From an optoelectronic perspective, the theory is
challenging because these systems are extended and cannot be easily treated
as single emitters coupled to radiation, yet they are not periodic, so that a
classification of electronic states based on the Bloch theorem is not possible
either.

Historically, in most plasmonic devices, the Fermi wavelength of the
electrons was much smaller than the plasmon wavelength which is of the
order of the geometric size of the system for standing waves. In other words,
the characteristic plasmon wave vector ¢ < kg, where kp is the Fermi wave
vector. In this regime, plasmons can be described classically and there is
no need to use a quantum mechanical approach [124, 125, 3, 2].

Recently, due to the progress in nanodevice fabrication, the quantum
regime for plasmons has been reached [126, 127]. In this regime, localized
surface plasmons make it possible to confine light to scales much smaller
than the scales of conventional optics, and as such provide a unique way
for light manipulation on scales below the diffraction limit. Surface plas-
mons have found applications in surface-enhanced spectroscopy [128, 129],
biological and chemical sensing [130], lithographic fabrication [131], and
photonics [132].

However, the theory of inhomogeneous quantum electron plasma, even
in the simplest random-phase approximation (RPA) [124, 125, 3, 2], is quite
complicated due to the essential nonlocality of the dielectric function [3].
Recently, a rigorous scattering theory of plasmons by obstacles was built
[133], but finding plasmon eigenmodes of inhomogeneous quantum systems
still remains a challenge. As a matter of fact, this problem is very old,
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starting with the early considerations [134, 135] of “atomic plasmons” [136,
137, 138, 139, 140] which eventually turned out to not exist [141, 142].
Previous attempts use additional uncontrollable approximations such as
truncation of quantum states [140], semi-classical [136, 139, 142] or even
classical [138] approaches.

In the first section, we discuss the specific models and methods used for
our calculations.

In the second section we show that the optical conductivity as a func-
tion of frequency (i.e. the optical spectrum) converges to a definite profile
as the fractal iteration increases, and we investigate the converged opti-
cal spectrum for different model parameters, highlighting the unexpected
appearance of sharp peaks. We also explain the origin of these peaks by
analyzing the contribution to the optical conductivity of sets of specific
electronic state-pairs in SCs of reduced size, which are amenable to exact
diagonalization.

In the third section we discuss the results of calculations of plasmonic
properties of fractal systems. We compare the plasmon dispersions of the
Sierpinski carpet and gasket to those of a square and triangle, respectively.

6.2 Model and methods

6.2.1 Hamiltonian

We consider the bottom-up models for the SC and SG from the previous
chapter (Fig. 5.2).

For the calculations on plasmonics, we need to define the hopping pa-
rameter and lattice constant. We use t = 2.8eV and a = 0.246 nm. These
are the parameters for graphene, and they are representative for 2D sys-
tems in general. Choosing a different lattice constant will lead to a different
plasmon spectrum, but the same qualitative behavior.
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6.2.2  Optical conductivity

To compute the optical spectrum (Egs. 2.18 - 2.21) of the Hamiltonian
(Eq. 5.1) on a SC, we can use exact diagonalization, provided the sample
is small enough.

For larger systems, we use the tight-binding propagation method (Eq.
2.41). The TBPM is very efficient for large quantum systems without trans-
lational invariance, such as fractals, because it performs calculations in real
space and does not require exact diagonalization. The density of states
D(FE) can be calculated with TBPM as well, using Eq. 2.35.

6.2.3 Dielectric function

For the calculation of the dielectric function we use Eq. 2.23. We set the
temperature 7' = 300 K, an inverse relaxation time § = 6 meV /h, chemical
potential g = 0.4 eV and a self-interaction potential of 15.78 eV.

To visualise the plasmon modes in a quantum mechanical system Wang
et al [143] introduced the following method. Consider the dielectric function
in its spectral decomposition:

Zen )|fn(w))(dn(w)] - (6.1)

In this method, for each w we consider only the eigenvalue €,,, (4, (w) that has
the highest value of —Im[l/e,(w)], which gives us the plasmon eigenmode
|, () (w)) that contributes most to the loss function.

However, it is not clear how to access these plasmon modes experimen-
tally. Currently, the standard way of probing plasmon properties of small
quantum mechanical systems is electron energy loss spectroscopy (EELS).
The fact that we calculate the full dielectric function gives us the possibility
to calculate the following Fourier transform, which distinguishes this study
from others:

(ale(w) /dr/dr (rle(w)|r') A=) | (6.2)
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The loss function —Im[l/(q|e(w)|q)] is then directly measurable using
EELS techniques [124, 125, 3, 2, 144].

Formally, there are two ways of identifying plasmons. A plas-
mon frequency is either given by a local maximum of the loss function
—Im[1/€y, () (w)], or by a frequency at which Re[e,,, (,)(w)] = 0. These fre-
quencies are not exactly equal due to Landau damping, which is quantified
by ¢ [145].

6.3 Optical conductivity of Sierpinski carpets

6.3.1 Convergence and parameter dependence of the spec-
trum

In Fig. 6.1 we show the optical spectrum at different fractal iterations I.
It is remarkable that, as the total width W of the SC increases, the optical
spectrum maintains its overall profile. Indeed, by comparing the results at
I =7 and I = 8, we conclude that, for any practical purpose, the optical
spectrum has converged by iteration I = 7.

Focusing on I = 7, we present in Fig. 6.2 the optical spectrum and the
DOS for different sizes S of the initial I = 0 square. Both quantities are
markedly different for S = 1 and S = 2. Interestingly, this shows that the
finest geometric structures of the SC play a substantial role in its optical
response, even in the limit of very large carpets, when such structures are
negligible in size. For both investigated values of S, the optical spectrum
is characterized by sharp peaks at low frequencies fiw < t.

In Fig. 6.3 we show the optical spectrum at different fractal iterations
I, keeping fixed the sample size W and decreasing the size S of the I = 0
square consequently. This top-down or algorithm represents more faithfully
a physical fabrication process based on etching more and more details into
a solid-state sample. From Fig. 6.3 it is apparent that increasing the detail
in the sample leads to higher-frequency peaks in the optical spectrum.
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Figure 6.1: Optical spectrum at S = 1 and increasing fractal iteration
I. (Graphs are progressively offset by 500 for clarity.) The three highest
peaks for I = 5 are already very close to the converged result for I = 7. The
inset shows the relative difference between the conductivities at subsequent
iterations, A(I) = [|oD(w) — o= D(w)|dw / [ o) (w)dw. This quantity
decreases with I to A(I) < 5% for I > 8. We expect a residual nonzero
difference partly due to the fact that the limit of a perfect fractal has not
been reached yet, and partly because we are using a finite number of random
states for the TBPM calculations, resulting in some statistical fluctuations.

6.3.2 Origin of the peaks in the optical spectrum

While the TBPM method allows us to calculate the optical spectrum and
the DOS of SCs up to fractal iteration I = 8, smaller systems up to I =5
are amenable to exact diagonalization. Although the optical spectrum is
not converged for I = 5, it already features well-defined low-frequency sharp
peaks (at fuv ~ 0.023¢, 0.071¢, and 0.22¢) that do not shift appreciably as I
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Figure 6.2: Converged DOS (top) and optical spectrum (bottom) for SCs
with S =1 (orange), S =2 (blue), and I =17.

is increased further. For this reason, we reckon that exact diagonalization
of the SC at fractal iteration I = 5 can give us reliable information on the
origin of the spectral peaks.

We first show that the spectral peaks cannot be understood as van-
Hove-like singularities, i.e. an enhancement of the optical response at those
frequencies matching a very large set of electronic transitions. To do so,
we compare the optical spectrum and the conductivity-like JDOS extracted
from Eq. (2.17) in Fig. 6.4 in the specific case S = 1 and I = 5. We clearly
see that there is no substantial correlation between these two functions.
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Figure 6.3: Optical spectrum for fixed SC width W = 2187 and different
fractal iteration I. (Graphs are progressively offset by 700¢ for clarity.
) To keep the width W fixed, the size S of the I = 0 square decreases
as I increases. Finer geometric structure generated at higher I generally
introduces higher frequency peaks.

The contributions of excitations between the two peaks in the DOS at
E = —0.11t and F = 0.11t (see Fig. 6.2) could be expected to account for
the optical conductivity peak at hw = 0.22¢, but these contributions are
washed out by those of state-pairs in which one state is around F = 0.

To show that the spectral peaks are also not due to few, particularly ef-
fective, electronic transitions between single state-pairs, we use the current-
current response function (Eq. 2.18). For each matrix element, (jq)mn, we
calculate the quantity | (P, — Py)(Jz)2,,|, which is a measure of the strength
of an electronic transition, independent of the frequency of the field which
drives the transition itself. Fig. 6.5 shows the distribution of the magni-
tude of this quantity. If the peaks in the optical spectrum were due to a
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Figure 6.4: Comparison of the optical spectrum (orange) and the

conductivity-like JDOS defined in Eq. 2.17 (blue) for S =1 and I = 5.

few electronic transitions, the distribution should have a few large values
with a small number of occurrences — which is clearly not the case.
Summarizing the analysis above, we have ruled out that sharp peaks in
the optical spectrum arise from dense, energy-localized sets of transitions,
or from sparse, isolated transitions between state-pairs. We are then left
with the option that the origin of the spectral peaks are transitions between
large and non-trivial sets of state-pairs, uncorrelated with the JDOS. In the
following, we characterize these sets, by directly looking at the probability
density of the wave functions on the SC. For example, the large peak in
Reo(w) at hw = 0.071t in Fig. 6.4 for a SC with S =1 and I =5 is due to
a collection of hundreds of state-pairs, two of which are shown in Fig. 6.6.
These state-pairs have all nearly the same contribution to that peak in the
optical spectrum and display very similar heart-shaped spatial features on
the scale of the geometric details introduced by the third (I = 3) fractal
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Figure 6.5: Number of occurrences of the quantity |( Py, — Py )(Jz)2,,|, using
logarithmically distributed bins, calculated from the electronic spectrum in
a SC with S=1and I =5.

iteration. Similarly, in Fig. 6.7 we display the state-pairs contributing most
to the peak at iw = 0.22¢ in a SC with S = 1 and I = 5, which display
similar heart-shaped profiles, but with length scales that are £ = 3 times
shorter, on the order of the second (I = 2) fractal iteration. All these
wave functions show very similar profiles, corresponding to confinement at
a specific fractal iteration, with higher peak frequencies being related to
shorter length scales within the SC. This behavior agrees with the results
shown in Fig. 6.3, i.e. “etching” an extra iteration into the sample generally
introduces higher frequency optical peaks.

To make a more quantitative connection between the peak frequencies
in the optical spectrum and the characteristic “confinement lengths” ap-
pearing in the electronic wave functions, we calculate the sum of probability
densities, weighted by their contribution to the optical conductivity, as a
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Figure 6.6: Two sets of top-contributing state-pairs for the peak at hw =
0.071t, in a SC with S =1 and I = 5.
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Figure 6.7: Two sets of top-contributing state-pairs for the peak at hw =
0.220t, in a SC with S =1 and I = 5.



Optical conductivity of Sierpinski carpets 85

0 S(r,w) max
[ T

(a) hw = 0.023t (b) hw = 0.071¢

(¢) hw = 0.220¢

Figure 6.8: Cumulative probability distributions S(r,w) of state-pairs
contributing to the peaks at (a) fiw = 0.023t; (b) hw = 0.071¢; and (c)
hw = 0.22t, in a SC with S =1 and I = 5.

function of w:

S0e,w) = = 3 T [Quunl)] ()] (63)

mn

The sum is restricted to states m and n such that their energy difference
falls within the window h(w — dw) < |Ep, — Ep| < h(w + dw), with hdw =
0.01t. Due to particle-hole symmetry, the result is the same for taking the
probability distributions |(r|i,)|? over the index m.

Fig. 6.8 shows the spatial profile of the quantity S(r,w) in a SC, for
three values of w corresponding to peaks in the optical spectrum. The
plots demonstrate a clear distinction in the characteristic length scale of
the probability density for different frequencies.

The substantial numerical effort needed to exactly diagonalize the
Hamiltonian (5.1) on a SC hinders a more precise characterization of the
state-pairs sets. We note that the heart-shaped features of the probability
density are distorted at hw = 0.023t, where the confinement length scale
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is on the order of the geometric details introduced by the fourth (I = 4)
fractal iteration. This is an artefact of the final size of the SC that we can
diagonalize exactly, and we reckon that at the sixth (I = 6) fractal iteration
the heart-shaped features would fit the SC geometry. Moreover, for S = 2
a similarly thorough analysis is too expensive numerically to cover in this
work. At I = 4, there is already some connection between length scale and
optical peak frequency, and there appears to be some extra splitting, caus-
ing two peaks per length scale. However, the optical conductivity is not yet
close enough to its converged result to make any conclusive statements.

6.4 Plasmon confinement in fractal quantum sys-
tems

The real-space loss function of the highest contributing plasmon mode is
shown in Fig. 6.9. It shows that there is a large number of plasmon frequen-
cies, and that the associated losses increase with increasing frequency. At
each discontinuity in Rele,, (,,)(w)] a different mode is found to be the high-
est contributor to the loss function. Such a discontinuity is not associated
with a plasmon, even though Re[e,, (,,)(w)] switches sign.

The real part of the highest contributing plasmon eigenmodes for both
the carpet and gasket are shown in Fig. 6.10. For further analysis, the
inverse participation ratio IPR(w) = [d%r| (r|dny (w))|* can give us a measure
of localization. The average IPR of |¢,,(,)) was found to be an order of
magnitude higher for the gasket than for the carpet. This can be seen as a
consequence of the finite ramification of the gasket, i.e. the fact that it is
less connected, and therefore the electrons are more confined and exhibit
more localized plasmon eigenmodes. Fig. 6.10(d) shows an example of such
a highly localized mode.

We now turn to the Fourier transform of the real-space loss function in
order to make a comparison to EELS experiments. Fig. 6.11 shows the loss
function as function of both ¢ and w.

There is a close resemblance between the carpet (Fig. 6.11(a)) and
a square sample (Fig. 6.11(b)). The dispersion of the carpet has extra



Plasmon confinement in fractal quantum systems 87

_ e
3 ]
3 400
TwE
£ 2001
|
0_
0 2 4 8
hw/t
1.0
— o ©
8 3 0
é/ —
T ~2 0.0
ARE I
Hla &—051
O T T _10 T T
0.21 0.22 0.23 0.24 0.21 0.22 0.23 0.24
hw/t hw/t

Figure 6.9: The highest contribution to the loss function — Im[egll(w) (w)].

(a) The loss function for the entire range of frequencies, in the case of (blue)
a third iteration Sierpinski carpet and (orange) a sixth iteration Sierpinski
gasket. (b) The loss function of a third iteration Sierpinski carpet for a
frequency interval 0.21¢ < hw < 0.24t. (c) Re[ey, (o) (w)] for a frequency in-
terval 0.21¢t < hw < 0.24¢, showing discontinuities. Orange crosses indicate
pairs of points between which Re[e,, (,)(w)] crosses zero in a continuous

manner.

broadening, similar to the broadening found in systems with disorder [146].
However, generally speaking, both curves look like a regular e(w) o /g
dispersion relation for surface plasmons [2]. The carpet exhibits no trans-
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Figure 6.10: The highest contributing plasmon eigenmodes in real space.
A few examples of the real space distribution Re[(r|¢y,, (,)(w))] of plasmon
modes, where red represents a positive value and blue represents a negative
value, for (a),(b) a third iteration Sierpinski carpet and (c),(d) a sixth
iteration Sierpinski gasket. Eigenmodes exhibiting different characteristic
length scales are shown.
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lational invariance, i.e. ¢ is not actually a good quantum number, so this
behavior is quite remarkable. The dispersion of the fourth iteration Sier-
pinski carpet is already very close to the third iteration dispersion. This
convergence indicates that the result is representative for the real fractal
at infinite iteration.

For the Sierpinski gasket (Fig. 6.11(c)), we observe different behavior.
This fractal does not closely follow the dispersion relation of a triangle built
out of a triangular lattice (Fig. 6.11(d)). Instead, we can clearly see the
formation of modes with a nearly flat dispersion, which means that they are
localized, as the Fourier transform of the dielectric function is only weakly
dependent on ¢. Again, this result is reasonably converged.
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Figure 6.11: Dispersion relation —Im[1/(q|é(w)|q)], showing the frequency
and momentum dependency of the loss function. (a) A square built out of
square lattice as compared to (b) the fourth iteration Sierpinski carpet.
Similarly, (c¢) a triangle built out of triangular lattice as compared to (d)
a sixth iteration Sierpinski gasket. The maximum of the left hand side is
plotted as a dashed blue line on the right hand side.
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6.5 Summary

In this chapter we have calculated the optical spectrum of a quantum elec-
tron gas roaming in a Sierpinski carpet. We have shown that the optical
spectrum converges to a definite profile as the fractal iteration increases.
The optical spectrum displays sharp peaks, which blue-shift as finer geo-
metric structures are produced at higher fractal iterations. We have pinned
down the origin of these peaks to electronic transitions between set of spe-
cific state-pairs whose wave functions experience quantum confinement in
the Sierpinski carpet at specific length scales.

Moreover, we have calculated the plasmon dispersion for the Sierpinski
carpet and Sierpinski gasket. The Sierpinski carpet has a plasmon disper-
sion comparable to the dispersion of a square lattice, whereas the gasket
exhibits highly localized plasmon modes. More generally, a finitely ramified
fractal can exhibit strong plasmon confinement, providing a novel setting
for the manipulation of light at the quantum scale. With current experi-
mental techniques, these results can be probed experimentally. Moreover,
we have presented a rigorous approach for calculating plasmonic proper-
ties of generic tight-binding systems, published as an open source software
project [4]. We believe that this code can be very useful for future projects
relating to plasmonic properties of non-translationally invariant systems.
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APPENDIX: TIPSI — A TIGHT-BINDING
PROPAGATION PACKAGE FOR PYTHON

The tight-binding propagation method provides a numerically cheap way to
calculate electronic, transport and optical properties of large tight-binding
systems. In this chapter, we present Tipsi (Tight-binding propagation
simulator): an open-source Python package for applying this method to
any tight-binding Hamiltonian.

Tipsi is available on https://gitlab.science.ru.nl/tcm/tipsi.
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7.1 Installation

You will need Python 3 with numpy and scipy. Optional modules for input
and output are hb5py and matplotlib. Moreover, you will need a FORTRAN
compiler.

To get the Tipsi files, type in a terminal:

git clone https://gitlab.science.ru.nl/tcm/tipsi

Then, install it using:

python setup.py install

in the main Tipsi directory. For information about how to manually install
the package, or set the compiler configuration, we refer to the documenta-
tion.

Now, we can get started. Create a new .py file and type:

import tipsi

7.2 Sample building

7.2.1 Lattices

A Lattice object contains the geometrical information of a material. It is
initiated with a list of lattice vectors and a list of orbital coordinates. E.g.,
for graphene:

a = 0.24 # lattice constant in nm
b = a / sgrt(3.) # carbon-carbon distance in nm
vectors = [[1.5 * b, -0.5 » a, 0.7,

1.5 x b, 0.5 » a, 0.]]
-/ 2., 0., 0.1,

b/ 2., 0., 0.]]

lat = tipsi.Lattice(vectors, orbital_coords)

orbital_coords

[
[
[l
[

If you are working with multiple orbitals per site, each orbital must be
listed separately in the second argument. In Tipsi, you should always use
nanometers as distance unit.
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7.2.2 SiteSets

A SiteSet object contains sites, that are added by unit cell coordinate and
orbital index. E.g., for graphene:

W = 10 # width

H = 10 # height

site_set = tipsi.SiteSet ()

for i in range (W) :

for j in range (H):

unit_cell_coords = (i, j, 0)
site_set.add_site (unit_cell_coords, 0)
site_set.add_site(unit_cell_coords, 1)

At each unit cell coordinate, we add two sites, generating 10 by 10 unit
cells in total.

7.2.3 HopDicts

A HopDict object contains the electronic information of a material. It
is given by a list of hopping matrices corresponding to relative unit cell
coordinates. E.g., for graphene:

t = 2.7 # hopping constant in eV
e = 0.0 # on-site potential in eV
A0 = [[e, tl,

[t, ell
A_nn0O = [[0., 0.7,

[(t, 0.1]
A_nnl = [[0., t]

[0., 0.11]

hop_dict = tipsi.HopDict ()
hop_dict.set ((0, 0, 0), A_0)

hop_dict.set ((1, 0, 0), A_nnO0)
hop_dict.set ((-1, 0, 0), A_nnl)
hop_dict.set ((0, 1, 0), A_nnO0)
hop_dict.set ((0, -1, 0), A_nnl)

In Tipsi, you should always use the energy unit electronvolts.
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7.2.4  Periodic boundary conditions

We need to tell Tipsi how to treat the boundary of the sample. Hence,
we define a function that takes a site coordinate outside the sample, and
returns a coordinate that falls within the sample. E.g., for graphene:

def pbc_func(unit_cell_coords, orbital):
X, y, z = unit_cell_coords

Q

return (x % W, y % H, z), orbital

This gives periodic boundary conditions along x and y directions. Of
course, we could also define periodic boundary conditions in only one di-
rection, to create a ribbon sample:

def pbc_func_ribbon (unit_cell_coords, orbital):
X, y, z = unit_cell_ coords
return (x % W, y, z), orbital

7.2.5 Samples

We now have all the ingredients to create a sample. A Sample object gener-
ates the full tight-binding Hamiltonian, given a Lattice, SiteSet, HopDict,
and boundary conditions. Also, keep in mind the Hamiltonian will have to
be rescaled, to fulfill the requirement that all eigenvalues must be in the
range [—1,1].

sample = tipsi.Sample(lat, site_set, pbc_func)
sample.add_hop_dict (hop_dict) # apply HopDict
sample.rescale_H(9.) # rescale Hamiltonian
sample.plot () # plot sample

The resulting plot looks like Fig. 7.12. As you can see, there are
hoppings between the outer sites of the sample, indicating that there are
periodic boundary conditions in both directions.

7.2.6 Adding disorder

We can introduce many types of disorder to our tight-binding model.
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Figure 7.12: A 10 by 10 graphene sample with nearest neighbor hopping
and periodic boundary conditions.

Vacancies can be made by deleting a site from the SiteSet, before ini-
tializing the Sample object:

site_set.delete_site(unit_cell_coords, orbital)

After adding a HopDict, we can add or change individual hoppings with:

sample.set_hopping (hop, unit_cell_coord0O, \
unit_cell_coordl, orbital0O, orbitall)

Moreover, Tipsi has some convenience functions for common types of
external fields.

We can uniformly strain the Lattice, HopDict pair with (for black phos-
phorus [74])

strain = 5 # strain in percent

beta = 4.5 # strain coefficient

strain_tensor = 0.01 * strain % np.diag([-0.2, 1, -0.21)
lattice, hop_dict = tipsi.uniform_strain(lattice, \

hop_dict, strain_tensor, beta)

If we have a HopDict with interlayer hoppings, we can create a multi-
layer sample and add bias by using
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n_layers = 2 # number of layers
bias = 1.0 # bias in eV/nm
n_orbitals = 2 # number of orbitals

# extend unit cell in z-direction
lattice, hop_dict = \
tipsi.extend_unit_cell (lattice, hop_dict, 2, n_layers)

# add bias
for i in range(n_orbitals » n_layers):
z = lat.site_pos((0, 0, 0), i)I[2]
onsite_pot = z x bias
hops.set_element ((0, 0, 0), (i, 1), onsite_pot)

# remove redundant z-direction hoppings
hops.remove_z_hoppings ()

Finally, a magnetic field can be introduced using a Peierls substitution,
using units of Tesla, with:

sample.set_magnetic_field (B)

7.2.7  Material library

Tipsi contains a material library with functions returning Lattice, HopDict,
SiteSet, PBC and Sample objects for a small selection of materials. These
can be accessed using import statements:

# import graphene material library
from tipsi.materials import graphene

# make 1000%1000 unit cell sample
sample = graphene.sample (1000, 1000)

In the current version (0.9), the following materials are available:
e single layer graphene with nearest neighbor hoppings

e single layer antimonene [27]




Configuration 99

e multilayer black phosphorus [72]
e single layer MoSy and WSy [147]

7.2.8 Interface with Wannier90

It is easy to create a Lattice, HopDict pair using Wannier90 output files.
To this end, we use the function

lattice, hop_dict = \
read_wannier90 (lat_file, coord_file, ham_file[, corr_file])

Here, lat_file contains lattice vectors and atom numbers, usually
named “*.win”. coord_file contains orbital coordinates, usually named
“*_centres.xyz”.  ham_file contains all the hoppings, usually named
“*_hr.dat”. corr_file contains correction terms for hoppings, usually named
“*_wsvec.dat”.

7.2.9 k-space functions

To check the Lattice and HopDict objects, we can calculate the band struc-
ture that they produce, provided a list of points in k-space:

bands = tipsi.band_structure (hop_dict, lat, kpoints)
for band in bands.swapaxes (0, 1):
plt.plot (kvals, band)

We can also calculate band structures for entire Sample objects, al-
though this is of course not feasible for larger systems:

bands = sample.band_structure (kpoints)

7.3 Configuration

Before we can run a simulation we need to set the parameters for the
TBPM calculations. For example, if we want to use 1024 time steps, 4
random samples, an energy range from -10 to 10 eV and we want to correct
for spin in the final result:
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config = tipsi.Config(sample)

config.generic|[’nr_time_steps’] = 1024
config.generic[’nr_random_samples’] = 4
config.generic[’energy_range’] = 20.
config.generic[’correct_spin’] = True

config.save ()

The last line ensures that the configuration object is saved to file, with
the same timestamp prefix as the correlation files.

Each correlation function calculation has its own set of configuration
parameters. Moreover, the Config object also contains output options. You
can find the full list of parameters in the online documentation.

7.4 Calculating and analyzing correlation func-
tions

Now that we have created a Sample, and defined the simulation configura-
tion parameters, we are ready to perform an actual calculation by calling
the FORTRAN subroutines. The resulting correlation functions are auto-
matically written to file.

The subsequent analysis of the correlation functions is done in Python.
We can get get the correlation functions directly from FORTRAN:

# DOS correlation, FORTRAN call
corr_DOS = tipsi.corr_DOS (sample, config)

# DOS correlation analysis
energies_DOS, DOS = tipsi.analyze_corr_DOS (config, corr_DOS)

# AC conductivity correlation, FORTRAN call
corr_AC = tipsi.corr_AC(sample, config)

# AC conductivity correlation analysis
omegas_AC, AC = tipsi.analyze_corr_AC(config, corr_AC)

Alternatively, we can read the correlation functions from file in a sepa-
rate Python script:
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ts = "1522172330" # set to output timestamp

# read Config object
config = tipsi.read_config("sim_data/" + ts + "config.pkl")

# get DOS
corr_DOS = tipsi.read_corr_DOS ("sim_data/" + ts + "corr_DOS.dat")
energies_DOS, DOS = tipsi.analyze_corr_DOS (config, corr_DOS)

In the current version (0.9), the following quantities can be calculated:
e DOS
e LDOS

e quasi-eigenstates

DC conductivity

AC conductivity
e dynamical polarization and dielectric function

For more details on how to call each of these functions, and which config-
uration parameters to set to use them, we refer to the documentation.




102 Tipsi — a tight-binding propagation package for python




BIBLIOGRAPHY

[1]

[10]

H. Suzuura and T. Ando, “Phonons and electron-phonon scattering
in carbon nanotubes,” Phys. Rev. B, vol. 65, p. 235412, May 2002.

G. Giuliani and G. Vignale, Quantum theory of the electron liquid.
Cambridge University Press, 2005.

S. V. Vonsovsky and M. I. Katsnelson, Quantum solid-state physics.
Springer-Verlag Berlin, Heidelberg, New York, 1989.

T. Westerhout, “Tools to calculate quantities related to
plasmons in materials with no translational symmetry.”
https://github.com/twesterhout/plasmon-cpp, 2017.

R. Landauer, “Spatial variation of currents and fields due to local-
ized scatterers in metallic conduction,” IBM Journal of Research and
Development, vol. 1, no. 3, pp. 223-231, 1957.

C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, “Kwant:
a software package for quantum transport,” New Journal of Physics,
vol. 16, no. 6, p. 063065, 2014.

S. Yuan, H. De Raedt, and M. I. Katsnelson, “Modeling electronic
structure and transport properties of graphene with resonant scatter-
ing centers,” Physical Review B, vol. 82, no. 11, p. 115448, 2010.

A. Hams and H. De Raedt, “Fast algorithm for finding the eigenvalue
distribution of very large matrices,” Phys. Rev. E, vol. 62, pp. 4365—
4377, Sep 2000.

R. Kubo, “Statistical-mechanical theory of irreversible processes. i.
general theory and simple applications to magnetic and conduction
problems,” Journal of the Physical Society of Japan, vol. 12, no. 6,
pp. 570-586, 1957.

A. Ishihara, Statistical Physics. Academic Press, New York, 1971.



104

Bibliography

[11]

[12]

S. Yuan, R. Roldan, and M. I. Katsnelson, “Excitation spectrum
and high-energy plasmons in single-layer and multilayer graphene,”
Physical Review B, vol. 84, no. 3, p. 035439, 2011.

K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Mo-
rozov, and A. Geim, “Two-dimensional atomic crystals,” PNAS,
vol. 102, no. 30, pp. 1045110453, 2005.

R. Roldan, L. Chirolli, E. Prada, J. A. Silva-Guillén, P. San-Jose, and
F. Guinea, “Theory of 2d crystals: graphene and beyond,” Chem.
Soc. Rev., vol. 46, no. 15, pp. 43874399, 2017.

J. Yu, M. I. Katsnelson, and S. Yuan, “Tunable electronic and
magneto-optical properties of monolayer arsenene from gw( approxi-
mation to large-scale tight-binding simulations,” Physical Review B,
vol. 98, p. 115117, 2018.

S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gémez-Herrero,
P. Ares, F. Zamora, Z. Zhu, and H. Zeng, “Recent progress in 2d
group-va semiconductors: from theory to experiment,” Chem. Soc.
Rev., vol. 47, pp. 982-1021, 2018.

S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin
arsenene and antimonene: semimetal-semiconductor and indirect—
direct band-gap transitions,” Angew. Chem., Int. Fd., vol. 127,
no. 10, pp. 3155-3158, 2015.

J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao,
W. Wang, Z. Ni, Y. Hao, and H. Zeng, “Two-dimensional antimonene
single crystals grown by van der waals epitaxy,” Nat. Commun.,
vol. 7, p. 13352, 2016.

P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Al-
dave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gémez-Herrero, and
F. Zamora, “Mechanical isolation of highly stable antimonene under
ambient conditions,” Adv. Mater., vol. 28, no. 30, pp. 6332-6336,
2016.



Bibliography 105

[19]

[21]

C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gdémez-Herrero,
M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abelldn,
and F. Zamora, “Few-layer antimonene by liquid-phase exfoliation,”
Angew. Chem., Int. Ed., vol. 55, no. 46, pp. 14345-14349, 2016.

X. Wu, Y. Shao, H. Liu, Z. Feng, Y.-L.. Wang, J.-T. Sun, C. Liu, J.-O.
Wang, Z.-L. Liu, S.-Y. Zhu, Y. Wang, S. Du, Y. Shi, K. Ibrahim, and
H. Gao, “Epitaxial growth and air-stability of monolayer antimonene
on pdte2,” Adv. Mater., vol. 29, no. 11, 2017.

L. Lu, X. Tang, R. Cao, L. Wu, Z. Li, G. Jing, B. Dong, S. Lu,
Y. Li, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Broadband nonlinear
optical response in few-layer antimonene and antimonene quantum
dots: A promising optical kerr media with enhanced stability,” Adv.
Opt. Mater., vol. 5, no. 17, 2017.

G. Wang, R. Pandey, and S. P. Karna, “Atomically thin group v
elemental films: theoretical investigations of antimonene allotropes,”
ACS Appl. Mater. Interfaces, vol. 7, no. 21, pp. 11490-11496, 2015.

0. U. Aktiirk, V. O. Ozcelik, and S. Ciraci, “Single-layer crystalline
phases of antimony: Antimonenes,” Phys. Rev. B, vol. 91, p. 235446,
Jun 2015.

D. Singh, S. K. Gupta, Y. Sonvane, and 1. Lukacevié¢, “Antimonene:
a monolayer material for ultraviolet optical nanodevices,” Journal of
Materials Chemistry C, vol. 4, no. 26, pp. 6386-6390, 2016.

G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. lannaccone, and
G. Fiori, “Performance of arsenene and antimonene double-gate mos-
fets from first principles,” Nat. Commun., vol. 7, p. 12585, 2016.

Y. Xu, B. Peng, H. Zhang, H. Shao, R. Zhang, and H. Zhu, “First-
principle calculations of optical properties of monolayer arsenene and
antimonene allotropes,” Ann. Phys. (Berlin), vol. 529, p. 1600152,
Apr. 2017.



106

Bibliography

[27]

[28]

33]

[34]

A. Rudenko, M. Katsnelson, and R. Roldén, “Electronic properties
of single-layer antimony: Tight-binding model, spin-orbit coupling,
and the strength of effective coulomb interactions,” Physical Review
B, vol. 95, no. 8, p. 081407, 2017.

Y. Wang, P. Huang, M. Ye, R. Quhe, Y. Pan, H. Zhang, H. Zhong,
J. Shi, and J. Lu, “Many-body effect, carrier mobility, and device
performance of hexagonal arsenene and antimonene,” Chem. Mater.,
vol. 29, no. 5, pp. 2191-2201, 2017.

H. Guo, N. Lu, J. Dai, X. Wu, and X. C. Zeng, “Phosphorene nanorib-
bons, phosphorus nanotubes, and van der waals multilayers,” J. Phys.
Chem. C, vol. 118, no. 25, pp. 14051-14059, 2014.

E. Taghizadeh Sisakht, M. H. Zare, and F. Fazileh, “Scaling laws of
band gaps of phosphorene nanoribbons: A tight-binding calculation,”
Phys. Rev. B, vol. 91, p. 085409, Feb 2015.

Y. Wang and Y. Ding, “Electronic structure and carrier mobilities
of arsenene and antimonene nanoribbons: a first-principle study,”
Nanoscale Research Letters, vol. 10, no. 1, p. 254, 2015.

M. M. Gruji¢, M. Ezawa, M. Z. Tadi¢, and F. M. Peeters, “Tun-
able skewed edges in puckered structures,” Phys. Rev. B, vol. 93,
p. 245413, Jun 2016.

Y. Song, X. Wang, and W. Mi, “Spin splitting and electric field mod-
ulated electron-hole pockets in antimonene nanoribbons,” npj Quan-
tum Materials, vol. 2, no. 1, p. 15, 2017.

H.-S. Tsai, C.-W. Chen, C.-H. Hsiao, H. Ouyang, and J.-H. Liang,
“The advent of multilayer antimonene nanoribbons with room tem-
perature orange light emission,” Chem. Commun., vol. 52, no. 54,
pp. 8409-8412, 2016.



Bibliography 107

[35]

L. Brey and H. A. Fertig, “Electronic states of graphene nanoribbons
studied with the dirac equation,” Phys. Rev. B, vol. 73, p. 235411,
Jun 2006.

D. Gunlycke, J. Li, J. Mintmire, and C. White, “Altering low-bias
transport in zigzag-edge graphene nanostrips with edge chemistry,”
Applied Physics Letters, vol. 91, no. 11, p. 112108, 2007.

G. Kresse and J. Furthmiiller, “Efficient iterative schemes for ab ini-
tio total-energy calculations using a plane-wave basis set,” Physical
review B, vol. 54, no. 16, p. 11169, 1996.

G. Kresse and J. Furthmiiller, “Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis
set,” Computational materials science, vol. 6, no. 1, pp. 15-50, 1996.

P. E. Blochl, “Projector augmented-wave method,” Physical review
B, vol. 50, no. 24, p. 17953, 1994.

R. Roldan and A. Castellanos-Gomez, “Black phosphorus: A new
bandgap tuning knob,” Nat. Photon., vol. 11, no. 7, p. 407, 2017.

S. Yuan, E. van Veen, M. 1. Katsnelson, and R. Rolddn, “Quantum
hall effect and semiconductor-to-semimetal transition in biased black
phosphorus,” Phys. Rev. B, vol. 93, p. 245433, Jun 2016.

C. R. Ast, D. Pacilé, L. Moreschini, M. C. Falub, M. Papagno,
K. Kern, M. Grioni, J. Henk, A. Ernst, S. Ostanin, and P. Bruno,
“Spin-orbit split two-dimensional electron gas with tunable rashba
and fermi energy,” Phys. Rev. B, vol. 77, p. 081407, Feb 2008.

V. Brosco, L. Benfatto, E. Cappelluti, and C. Grimaldi, “Uncon-
ventional dc transport in rashba electron gases,” Phys. Rev. Lett.,
vol. 116, p. 166602, Apr 2016.

H. Rostami, R. Asgari, and F. Guinea, “Edge modes in zigzag and
armchair ribbons of monolayer mos 2,” J. Phys.: Condens. Matter,
vol. 28, no. 49, p. 495001, 2016.



108

Bibliography

[45]

[46]

[47]

[49]

[50]

[53]

P. Avouris, T. F. Heinz, and T. Low, eds., 2D Materials: Properties
and Devices. Cambridge University Press, 2017.

L.Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and
Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nano.,
vol. 9, no. 5, pp. 372-377, 2014.

H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Toméanek, and P. D.
Ye, “Phosphorene: an unexplored 2d semiconductor with a high hole
mobility,” ACS nano, vol. 8, no. 4, pp. 4033-4041, 2014.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L.
Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema,
G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and
H. S. J. van der Zant, “Isolation and characterization of few-layer
black phosphorus,” 2D Mater., vol. 1, no. 2, p. 025001, 2014.

F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an
anisotropic layered material for optoelectronics and electronics,” Nat.
Comm., vol. 5, p. 4458, 2014.

C. Lin, R. Grassi, T. Low, and A. S. Helmy, “Multilayer black phos-
phorus as a versatile mid-infrared electro-optic material,” Nano let-
ters, vol. 16, no. 3, pp. 1683-1689, 2016.

R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, and M. Li,
“Midinfrared electro-optic modulation in few-layer black phospho-
rus,” Nano letters, vol. 17, no. 10, pp. 6315-6320, 2017.

W. S. Whitney, M. C. Sherrott, D. Jariwala, W.-H. Lin, H. A. Bech-
tel, G. R. Rossman, and H. A. Atwater, “Field effect optoelectronic
modulation of quantum-confined carriers in black phosphorus,” Nano
letters, vol. 17, no. 1, pp. 78-84, 2016.

B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian,
S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, and F. Xia,



Bibliography 109

[54]

[58]

[59]

[60]

“Efficient electrical control of thin-film black phosphorus bandgap,”
Nat. Comm., vol. 8, p. 14474, 2017.

Y. Liu, Z. Qiu, A. Carvalho, Y. Bao, H. Xu, S. J. Tan, W. Liu,
A. Castro Neto, K. P. Loh, and J. Lu, “Gate-tunable giant stark effect
in few-layer black phosphorus,” Nano Lett., vol. 17, no. 3, pp. 1970—
1977, 2017.

J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Den-
linger, Y. Yi, H. J. Choi, and K. S. Kim, “Observation of tunable
band gap and anisotropic dirac semimetal state in black phospho-
rus,” Science, vol. 349, no. 6249, pp. 723-726, 2015.

J. Yang, R. Xu, J. Pei, Y. W. Myint, F. Wang, Z. Wang, S. Zhang,
Z. Yu, and Y. Lu, “Optical tuning of exciton and trion emissions in
monolayer phosphorene,” Light Sci. Appl., vol. 4, no. 7, p. e312, 2015.

J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A. J.
Molina-Mendoza, N. Agrait, G. Rubio-Bollinger, F. Guinea,
R. Roldan, and A. Castellanos-Gomez, “Strong modulation of optical
properties in black phosphorus through strain-engineered rippling,”
Nano letters, vol. 16, no. 5, pp. 2931-2937, 2016.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced
gap modification in black phosphorus,” Phys. Rev. Lett., vol. 112,
p- 176801, May 2014.

Z.J. Xiang, G. J. Ye, C. Shang, B. Lei, N. Z. Wang, K. S. Yang, D. Y.
Liu, F. B. Meng, X. G. Luo, L. J. Zou, Z. Sun, Y. Zhang, and X. H.
Chen, “Pressure-induced electronic transition in black phosphorus,”
Phys. Rev. Lett., vol. 115, p. 186403, Oct 2015.

T. Low, A. Chaves, J. Caldwell, A. Kumar, N. Fang, P. Avouris,
T. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons
in layered two-dimensional materials,” Nat. Mater., vol. 16, no. 2,
pp. 182-194, 2017.



110

Bibliography

[61]

[62]

[63]

[64]

[67]

[68]

[69]

R. W. Keyes, “The electrical properties of black phosphorus,” Phys-
ical Review, vol. 92, no. 3, p. 580, 1953.

A. Poddubny, 1. Torsh, P. Belov, and Y. Kivshar, “Hyperbolic meta-
materials,” Nat. Photon., vol. 7, no. 12, pp. 948-957, 2013.

O. Yermakov, A. Ovcharenko, M. Song, A. Bogdanov, I. Iorsh, and
Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,”
Physical Review B, vol. 91, no. 23, p. 235423, 2015.

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons
and topological transitions over uniaxial metasurfaces,” Physical re-
view letters, vol. 114, no. 23, p. 233901, 2015.

A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2d materi-
als for tunable hyperbolic plasmonics,” Phys. Rev. Lett., vol. 116,
p. 066804, Feb 2016.

Y. Yermakov, A. A. Hurshkainen, D. A. Dobrykh, P. V. Kapitanova,
I. V. Torsh, S. B. Glybovski, and A. A. Bogdanov, “Experimental ob-
servation of hybrid te-tm polarized surface waves supported by a hy-
perbolic metasurface,” Physical Review B, vol. 98, no. 19, p. 195404,
2018.

W. Ma, P. Alonso-Gonzélez, S. Li, A. Y. Nikitin, J. Yuan, J. Martin-
Sanchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, et al.,
“In-plane anisotropic and ultra-low-loss polaritons in a natural van
der waals crystal,” Nature, vol. 562, no. 7728, p. 557, 2018.

7. Zheng, N. Xu, S. L. Oscurato, M. Tamagnone, F. Sun, Y. Jiang,
Y. Ke, J. Chen, W. Huang, W. L. Wilson, et al, “A mid-
infrared biaxial hyperbolic van der waals crystal,” arXiv preprint
arXiw:1809.03432, 2018.

D. Correas-Serrano, J. Gomez-Diaz, A. A. Melcon, and A. Alu,
“Black phosphorus plasmonics: anisotropic elliptical propagation and



Bibliography 111

[71]

[75]

[76]

nonlocality-induced canalization,” J. Opt., vol. 18, no. 10, p. 104006,
2016.

J. Shang, C. Cong, Z. Wang, N. Peimyoo, L.. Wu, C. Zou, Y. Chen,
X. Y. Chin, J. Wang, C. Soci, et al., “Room-temperature 2d semi-
conductor activated vertical-cavity surface-emitting lasers,” Nature
communications, vol. 8, no. 1, p. 543, 2017.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus,
F. Hatami, W. Yao, J. Vuckovié, A. Majumdar, et al., “Monolayer
semiconductor nanocavity lasers with ultralow thresholds,” Nature,
vol. 520, no. 7545, p. 69, 2015.

A. N. Rudenko and M. I. Katsnelson, “Quasiparticle band structure
and tight-binding model for single-and bilayer black phosphorus,”
Physical Review B, vol. 89, no. 20, p. 201408, 2014.

A. Rudenko, S. Yuan, and M. Katsnelson, “Toward a realistic de-
scription of multilayer black phosphorus: From g w approximation
to large-scale tight-binding simulations,” Physical Review B, vol. 92,
no. 8, p. 085419, 2015.

P. San-Jose, V. Parente, F. Guinea, R. Roldan, and E. Prada, “In-
verse funnel effect of excitons in strained black phosphorus,” Physical
Review X, vol. 6, no. 3, p. 031046, 2016.

Q. Wei and X. Peng, “Superior mechanical flexibility of phosphorene
and few-layer black phosphorus,” Appl. Phys. Lett., vol. 104, no. 25,
p- 251915, 2014.

T. Low, P.-Y. Chen, and D. Basov, “Superluminal plasmons with res-
onant gain in population inverted bilayer graphene,” Physical Review
B, vol. 98, no. 4, p. 041403, 2018.

A. F. Page, F. Ballout, O. Hess, and J. M. Hamm, “Nonequilibrium
plasmons with gain in graphene,” Physical Review B, vol. 91, no. 7,
p. 075404, 2015.



112

Bibliography

78]

[79]

[80]

[82]

[83]

[36]

T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, and
A. H. Castro Neto, “Tunable optical properties of multilayer black
phosphorus thin films,” Phys. Rev. B, vol. 90, p. 075434, Aug 2014.

G. Zhang, S. Huang, A. Chaves, C. Song, V. O. Ozg:elik, T. Low, and
H. Yan, “Infrared fingerprints of few-layer black phosphorus,” Nature
communications, vol. 8, p. 14071, 2017.

G. Ni, L. Wang, M. Goldflam, M. Wagner, Z. Fei, A. McLeod, M. Liu,
F. Keilmann, B. Ozyilmaz, A. C. Neto, et al., “Ultrafast optical
switching of infrared plasmon polaritons in high-mobility graphene,”
Nature Photonics, vol. 10, no. 4, p. 244, 2016.

C. H. Lui, K. F. Mak, J. Shan, T. F. Heinz, et al., “Ultrafast photolu-
minescence from graphene,” Physical review letters, vol. 105, no. 12,
p- 127404, 2010.

M. Polini, F. Guinea, M. Lewenstein, H. Manoharan, and V. Pel-
legrini, “Artificial honeycomb lattices for electrons, atoms and pho-
tons,” Nature Nanotech., vol. 8, no. 9, pp. 625-633, 2013.

A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vig-
nale, M. Katsnelson, A. Pinczuk, L. Pfeiffer, K. West, et al., “Two-
dimensional mott-hubbard electrons in an artificial honeycomb lat-
tice,” Science, vol. 332, no. 6034, pp. 1176-1179, 2011.

K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, “De-
signer dirac fermions and topological phases in molecular graphene,”
Nature, vol. 483, no. 7389, p. 306, 2012.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky,
F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic floquet
topological insulators,” Nature, vol. 496, no. 7444, p. 196, 2013.

G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, “Experimental realization of the topo-



Bibliography 113

[87]

[33]

[90]

[91]

[92]

[93]

logical haldane model with ultracold fermions,” Nature, vol. 515,
no. 7526, p. 237, 2014.

F. D. M. Haldane, “Model for a quantum hall effect without lan-

dau levels: Condensed-matter realization of the” parity anomaly”,
Physical Review Letters, vol. 61, no. 18, p. 2015, 1988.

M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale,
A. Pinczuk, L. N. Pfeiffer, and K. W. West, “Engineering artifi-
cial graphene in a two-dimensional electron gas,” Physical Review
B, vol. 79, no. 24, p. 241406, 2009.

G. De Simoni, A. Singha, M. Gibertini, B. Karmakar, M. Polini,
V. Piazza, L. Pfeiffer, K. West, F. Beltram, and V. Pellegrini,
“Delocalized-localized transition in a semiconductor two-dimensional
honeycomb lattice,” Applied Physics Letters, vol. 97, no. 13,
p- 132113, 2010.

C.-H. Park and S. G. Louie, “Making massless dirac fermions from a
patterned two-dimensional electron gas,” Nano letters, vol. 9, no. 5,
pp. 1793-1797, 2009.

E. Résénen, C. Rozzi, S. Pittalis, and G. Vignale, “Electron-electron
interactions in artificial graphene,” Physical review letters, vol. 108,
no. 24, p. 246803, 2012.

L. Nadvornik, M. Orlita, N. Goncharuk, L. Smré¢ka, V. Novak, V. Ju-
rka, K. Hruska, Z. Vyborny, Z. Wasilewski, M. Potemski, et al.,
“From laterally modulated two-dimensional electron gas towards ar-
tificial graphene,” New Journal of Physics, vol. 14, no. 5, p. 053002,
2012.

S. Goswami, M. Aamir, C. Siegert, M. Pepper, 1. Farrer, D. A.
Ritchie, and A. Ghosh, “Transport through an electrostatically de-
fined quantum dot lattice in a two-dimensional electron gas,” Physical
Review B, vol. 85, no. 7, p. 075427, 2012.



114

Bibliography

[94]

[97]

[99]

[100]

[101]

[102]

D. Scarabelli, S. Wang, A. Pinczuk, S. J. Wind, Y. Y. Kuznetsova,
L. N. Pfeiffer, K. West, G. C. Gardner, M. J. Manfra, and V. Pel-
legrini, “Fabrication of artificial graphene in a gaas quantum het-
erostructure,” Journal of Vacuum Science € Technology B, Nan-
otechnology and Microelectronics: Materials, Processing, Measure-
ment, and Phenomena, vol. 33, no. 6, p. 06FG03, 2015.

S. Kempkes, M. Slot, S. Freeney, S. Zevenhuizen, D. Vanmaekelbergh,
I. Swart, and C. M. Smith, “Design and characterization of electrons
in a fractal geometry,” Nature Physics, p. 1, 2018.

W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van
Roij, M. Dijkstra, and D. Vanmaekelbergh, “Low-dimensional semi-
conductor superlattices formed by geometric control over nanocrystal
attachment,” Nano letters, vol. 13, no. 6, pp. 2317-2323, 2012.

Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G.
De Oteyza, F. R. Fischer, S. G. Louie, and M. F. Crommie, “Molecu-
lar bandgap engineering of bottom-up synthesized graphene nanorib-

bon heterojunctions,” Nature nanotechnology, vol. 10, no. 2, p. 156,
2015.

J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt,
X. Shao, J. Gottfried, and K. Wu, “Assembling molecular sierpinski
triangle fractals,” Nature Chem., vol. 7, no. 5, pp. 389-393, 2015.

K. J. Falconer, The geometry of fractal sets, vol. 85. Cambridge
university press, 1986.

B. Mandelbrot, The fractal geometry of nature. W.H. Freeman and
Co., New York, 1983.

R. Ketzmerick, “Fractal conductance fluctuations in generic chaotic
cavities,” Physical Review B, vol. 54, no. 15, p. 10841, 1996.

A. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P. Kelly, A. Delage,
and Z. Wasilewski, “Fractal conductance fluctuations in a soft-wall



Bibliography 115

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

stadium and a sinai billiard,” Physical review letters, vol. 80, no. 9,
p. 1948, 1998.

I. Guarneri and M. Terraneo, “Fractal fluctuations in quantum in-
tegrable scattering,” Physical Review E, vol. 65, no. 1, p. 015203,
2001.

R. Taylor, R. Newbury, A. Micolich, M. Fromhold, H. Linke,
G. Davies, T. Martin, and C. Marlow, “A review of fractal con-
ductance fluctuations in ballistic semiconductor devices,” in Electron
Transport in Quantum Dots, pp. 277-316, Springer, 2003.

V. Kotimaki, E. Rasdnen, H. Hennig, and E. J. Heller, “Fractal dy-
namics in chaotic quantum transport,” Physical Review E, vol. 88,
no. 2, p. 022913, 2013.

S. Havlin and D. Ben-Avraham, “Diffusion in disordered media,” Ad-
vances in Physics, vol. 36, no. 6, pp. 695-798, 1987.

M. B. Isichenko, “Percolation, statistical topography, and transport
in random media,” Reviews of modern physics, vol. 64, no. 4, p. 961,
1992.

S. Kusuoka, “Lecture on diffusion processes on nested fractals,” in
Statistical mechanics and fractals, pp. 39-98, Springer, 1993.

A. Chakrabarti, “Exact results for infinite and finite sierpinski gas-
ket fractals: extended electron states and transmission properties,”
Journal of Physics: Condensed Matter, vol. 8, no. 50, p. 10951, 1996.

C. Groth, J. Tworzydio, and C. Beenakker, “Electronic shot noise
in fractal conductors,” Physical review letters, vol. 100, no. 17,
p. 176804, 2008.

Y. Liu, Z. Hou, P. Hui, and W. Sritrakool, “Electronic transport
properties of sierpinski lattices,” Phys. Rev. B, vol. 60, pp. 13444—
13452, Nov 1999.



116

Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Z. Lin, Y. Cao, Y. Liu, and P. Hui, “Electronic transport properties
of sierpinski lattices in a magnetic field,” Physical Review B, vol. 66,
no. 4, p. 045311, 2002.

S. Jana, A. Chakrabarti, and S. Chattopadhyay, “Electronic trans-
port in an anisotropic sierpinski gasket,” Physica B: Condensed Mat-
ter, vol. 405, no. 17, pp. 3735-3740, 2010.

Z.-G. Song, Y.-Y. Zhang, and S.-S. Li, “The topological insulator in
a fractal space,” Applied Physics Letters, vol. 104, no. 23, p. 233106,
2014.

D. R. Hofstadter, “Energy levels and wave functions of bloch electrons
in rational and irrational magnetic fields,” Physical review B, vol. 14,
no. 6, p. 2239, 1976.

R. Rammal and G. Toulouse, “Spectrum of the schrédinger equation
on a self-similar structure,” Physical review letters, vol. 49, no. 16,
p. 1194, 1982.

E. Domany, S. Alexander, D. Bensimon, and L. P. Kadanoff, “Solu-
tions to the schrodinger equation on some fractal lattices,” Physical
Review B, vol. 28, no. 6, p. 3110, 1983.

R. Rammal, “Nature of eigenstates on fractal structures,” Physical
Review B, vol. 28, no. 8, p. 4871, 1983.

X. R. Wang, “Localization in fractal spaces: exact results on the
sierpinski gasket,” Physical Review B, vol. 51, no. 14, p. 9310, 1995.

A. Hernando, M. Sulc, and J. Vanicek, “Spectral properties of elec-
trons in fractal nanowires,” arXiv preprint arXiv:1505.07741, 2015.

T. Vicsek, “Fractal models for diffusion controlled aggregation,” Jour-
nal of Physics A: Mathematical and General, vol. 16, no. 17, p. L647,
1983.



Bibliography 117

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

T. G. Pedersen, C. Flindt, J. Pedersen, N. A. Mortensen, A.-P. Jauho,
and K. Pedersen, “Graphene antidot lattices: designed defects and
spin qubits,” Physical Review Letters, vol. 100, no. 13, p. 136804,
2008.

Y. Gefen, A. Aharony, and B. B. Mandelbrot, “Phase transitions
on fractals. iii. infinitely ramified lattices,” Journal of Physics A:
Mathematical and General, vol. 17, no. 6, p. 1277, 1984.

P. Nozieres and D. Pines, The Theory of Quantum Liquids (Advanced
Book: Classics). Perseus Books, LLC, 1999.

P. M. Platzman and P. A. Wolff, Waves and interactions in solid state
plasmas, vol. 13. Academic Press New York, 1973.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon
resonances of individual metallic nanoparticles,” Nature, vol. 483,
no. 7390, p. 421, 2012.

M. S. Tame, K. McEnery, S. Ozdemir, J. Lee, S. Maier, and M. Kim,
“Quantum plasmonics,” Nature Physics, vol. 9, no. 6, p. 329, 2013.

C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. Van Duyne,
“Surface-enhanced raman sensors: early history and the development
of sensors for quantitative biowarfare agent and glucose detection,”
Journal of Raman Spectroscopy: An International Journal for Orig-
inal Work in all Aspects of Raman Spectroscopy, Including Higher
Order Processes, and also Brillouin and Rayleigh Scattering, vol. 36,
no. 6-7, pp. 471-484, 2005.

A. C. Pipino, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced
second-harmonic diffraction: selective enhancement by spatial har-
monics,” Physical Review B, vol. 49, no. 12, p. 8320, 1994.

C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L.

Haynes, and R. P. Van Duyne, “Towards advanced chemical and bio-



118

Bibliography

[131]

[132]

[133]

[134]

[135]

136

137]

[138]

[139]

[140]

logical nanosensorsan overview,” Talanta, vol. 67, no. 3, pp. 438448,
2005.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic
nanolithography,” Nano letters, vol. 4, no. 6, pp. 1085-1088, 2004.

M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics,
vol. 131. Springer, 2007.

I. Torre, M. I. Katsnelson, A. Diaspro, V. Pellegrini, and M. Polini,
“Lippmann-schwinger theory for two-dimensional plasmon scatter-
ing,” Physical Review B, vol. 96, no. 3, p. 035433, 2017.

F. Bloch, “Bremsvermogen von atomen mit mehreren elektronen,”
Zeitschrift fiir Physik A Hadrons and Nuclei, vol. 81, no. 5, pp. 363—
376, 1933.

H. Jensen, “Eigenschwingungen eines fermi-gases und anwendung
auf die blochsche bremsformel fiir schnelle teilchen,” Zeitschrift fir
Physik, vol. 106, no. 9-10, pp. 620-632, 1937.

B. K. Ishmukhametov, “Bk ishmukhametov, phys. status solidi (b)
45, 669 (1971).,” Phys. Status Solidi (b), vol. 45, p. 669, 1971.

A. Sen, “Spectrum of plasma oscillations in atoms,” Lettere al Nuovo
Cimento (1971-1985), vol. 8, no. 12, pp. 749-752, 1973.

G. Gadiyak, A. Kirzhnits, and E. Lozovik, “Collective excitations of
a heavy atom,” Zh. Eksp. Teor. Fiz, vol. 69, pp. 122-130, 1975.

B. Ishmukhametov and M. Katsnelson, “Collective oscillations of an
inhomogeneous electron plasma in the quasi-classical approximation,”
Fiz. Met. Metalloved., vol. 40, no. 4, pp. 736-742, 1975.

M. Y. Amusia and V. Ivanov, “On the existence of a collective level
in the xe-atom,” Physics Letters A, vol. 65, no. 3, pp. 217-219, 1978.



Bibliography 119

[141]

[142]

[143]

[144]

[145]

[146]

[147]

E. Verkhovtseva, P. Pogrebnyak, and Y. M. Fogel, “Concerning the
possibility of radiative decay of the collective levels of the argon
atom,” JETP LETTERS, vol. 24, no. 8, pp. 425-428, 1976.

B. K. Ishmukhametov, V. Larionov, M. Katsnelson, and
A. Ustjuzhanin, “On the existence of the atomic plasmon,” Physics
Letters. A, vol. 82, no. 8, pp. 387-388, 1981.

W. Wang, T. Christensen, A.-P. Jauho, K. S. Thygesen, M. Wubs,
and N. A. Mortensen, “Plasmonic eigenmodes in individual and bow-
tie graphene nanotriangles,” Scientific reports, vol. 5, p. 9535, 2015.

J. Lu, K. P. Loh, H. Huang, W. Chen, and A. T. Wee, “Plasmon
dispersion on epitaxial graphene studied using high-resolution elec-
tron energy-loss spectroscopy,” Physical Review B, vol. 80, no. 11,
p. 113410, 2009.

K. Andersen, K. W. Jacobsen, and K. S. Thygesen, “Spatially re-
solved quantum plasmon modes in metallic nano-films from first-
principles,” Physical Review B, vol. 86, no. 24, p. 245129, 2012.

F. Jin, R. Roldan, M. I. Katsnelson, and S. Yuan, “Screening and
plasmons in pure and disordered single-and bilayer black phospho-
rus,” Physical Review B, vol. 92, no. 11, p. 115440, 2015.

E. Cappelluti, R. Roldan, J. Silva-Guillén, P. Ordején, and
F. Guinea, “Tight-binding model and direct-gap/indirect-gap transi-
tion in single-layer and multilayer mos 2,” Physical Review B, vol. 88,
no. 7, p. 075409, 2013.



120 Bibliography




SUMMARY

Two-dimensional materials have many possible applications in electronics
and optics. To further explore these possibilities we need to do realistic
modelling of large-scale two-dimensional systems. However, this is difficult
with ab initio methods.

The tight-binding approximiation provides a simple and intuitive way
to model large-scale two-dimensional condensed matter systems. It also
allows for the introduction of different types of external fields and disorder.
We can study electronic, transport and optical properties using exact diag-
onalization of the Hamiltonian. When the number of atoms in the model
becomes so large that exact diagonalization is no longer an option, we can
use the tight-binding propagation method to calculate these properties. In
chapter 2 we saw how exactly to do these computations.

In chapter 3 we saw a simple application of the tight-binding method:
antimonene ribbons under bias. It turns out that we can move around the
electronic bands of the system, by applying an electric field. An out-of-
plane field increases the gap, and an in-plane electric field decreases the
gap and causes band splitting.

Then we moved on to black phosphorus. In chapter 4, we studied the
optical properties of this material, and showed how its hyperbolic spectrum
can be tuned by applying strain and bias. Moreover, we showed that optical
gain introduces a new hyperbolic region to the material.

In chapters 5 and 6 we studied fractal systems. These are systems that
are self-similar, i.e., they exhibit patterns that repeat on different length
scales.

We showed that the conductance of fractals in the Sierpinski carpet
family is self-similar, just like the sample itself. Moreover, the box-counting
dimension of this graph is approximately equal to the Hausdorff dimension
of the sample, suggesting a relation between them. For other, less connected
fractals, this is not the case.

Then, we investigated the optical and plasmonic properties of Sierpinski
carpets and gaskets. We learned that the optical conductivity shows peaks
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122 Summary

corresponding to each length scale present in the sample, as a result of the
overlap of eigenstates at each of those scales. Moreover, we showed that the
Sierpinski gasket features localized plasmon modes. This type of plasmon
confinement could be interesting for light manipulation at the atomic level.
Finally, in the appendix we introduced Tipsi: a tight-binding propaga-
tion simulator for Python. With this library it is easy to make a large-scale
Hamiltonian and apply the tight-binding propagation method to it.



SAMENVATTING

Tweedimensionale materialen hebben vele mogelijke toepassingen in elek-
tronica en optica. Om deze mogelijkheden verder te verkennen moeten we
realistische modellen van grootschalige tweedimensionale systemen doorre-
kenen. Dit is echter lastig met ab initio methoden.

De tight-binding benadering geeft ons een simpele en intuitieve manier
om deze grootschalige vastestofmodellen te maken. Met deze benadering
kunnen we bovendien verschillende soorten externe velden en wanorde aan-
brengen. We kunnen de elektronische en optische eigenschappen van ma-
terialen bestuderen door middel van diagonalisatie van de Hamiltoniaan.
Wanneer het aantal atomen in het model echter zo groot wordt dat dia-
gonalisatie geen optie is, kunnen we de tight-binding propagatiemethode
gebruiken. In hoofdstuk 2 zagen we hoe je zulke berekeningen precies uit-
voert.

In hoofdstuk 3 zagen we een simpele toepassing van de tight-binding
methode: antimoneen-nanoribbons met bias. Het blijkt dat we de elektro-
nische bandstructuur van het systeem kunnen aanpassen door een elektrisch
veld toe te passen. Een veld haaks op het materiaal maakt de band gap
groter, en een veld in transversale richting maakt de band gap groter en
veroorzaakt band splitting.

Daarna zijn we overgestapt naar fosforeen. In hoofdstuk 4 hebben we
de optische eigenschappen van dit materiaal bestudeerd, en kwamen we
erachter dat het hyperbolische spectrum kan worden aangepast door het
materiaal uit te rekken en een elektrisch veld toe te passen. Daarnaast
kunnen we een nieuwe hyperbolische regio introduceren door optische gain
te gebruiken.

In hoofdstukken 5 en 6 hebben we fractale systemen bekeken. Dit zijn
systemen die zelfgelijkvormig zijn. In andere woorden, het materiaal ver-
toont patronen die gelijk zijn op verschillende lengteschalen.

We hebben laten zien dat de geleidbaarheid van het tapijt van Sierpin-
ski zelfgelijkvormig is, net zoals de geometrie van het systeem zelf. Daarbij
is de box-counting dimensie van de geleidbaarheid ongeveer gelijk aan de
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Hausdorff-dimensie van het sample, wat een relatie tussen deze twee sug-
gereert. Voor andere, minder verbonden fracals is dit niet het geval.

Daarna hebben we de optische en plasmonische eigenschappen van ta-
pijten en driehoeken van Sierpinski onderzocht. We hebben daar geleerd
dat het optische spectrum pieken vertoont die overeenkomen met de lengte-
schalen in het systeem, tengevolge van de overlap tussen eigentoestanden op
die schalen. Daarnaast hebben we laten zien dat de driehoek van Sierpinski
gelocaliseerde plasmon-modes heeft. Dat type confinement kan interessant
zijn voor de manipulatie van licht op atomische schaal.

Ten slotte hebben we Tipsi geintroduceerd: een Python library voor
tight-binding propagatie. Hiermee is het gemakkelijk om grootschalige
tight-binding Hamiltonianen te maken en daarop de propagatiemethode
toe te passen.
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